This past year has witnessed a sharp increase in EUV lithography progress spanning production tools, source and infrastructure to better position the technology for HVM readiness. While the exposure source remains the largest contributor to downtime and availability, significant strides in demonstrated source power have bolstered confidence in the viability of EUVL for insertion into HVM production. The ongoing development of an EUV pellicle solution alleviates industry concern about one significant source of line-yield risk. In addition to continued expected improvements in EUV source power and availability, the ability to deliver predictable yield remains an ultimate gate to HVM insertion. Ensuring predictable yield requires significant emphasis on reticles. This includes continued pellicle development to enable the readiness and supply of a robust pellicle solution in advance of 250W source power, as well as improvements in mask blank defectivity and techniques to detect and mitigate reticle blank and pattern defects.
Resists with robust defect margins for bright field patterning are critical to high resolution lithography. In this paper, we present the application of analytical techniques to screen high resolution photoresists with reduced tendency to form side-lobe defects from diffraction in ePSM and chromeless APSM lithography. Resist candidates are compared based on a novel method to determine accurate high-contrast development etch rate curve data from diluted normality analysis combined with attenuated FTIR. The measured data is applied to determine parameters for aerial image and molecular level resist models which screen potential resists for performance in side-lobe suppression within random mask layout. Feature level prediction and experimental validation is discussed as well as general selection criteria for high resolution, low-defect liability resist materials for severe bright field ePSM and APSM lithography.
Conference Committee Involvement (8)
Optical Microlithography XXVIII
24 February 2015 | San Jose, California, United States
Optical Microlithography XXVII
25 February 2014 | San Jose, California, United States
Optical Microlithography XXVI
26 February 2013 | San Jose, California, United States
Optical Microlithography XXV
14 February 2012 | San Jose, California, United States
Optical Microlithography XXIV
1 March 2011 | San Jose, California, United States
Optical Microlithography XXIII
23 February 2010 | San Jose, California, United States
Optical Microlithography XXII
24 February 2009 | San Jose, California, United States
Optical Microlithography XXI
26 February 2008 | San Jose, California, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.