We report on the traceable calibration of linewidth (CD) photomask standards which are used as reference standards for
production masks of the 65 nm node. Two different types of masks with identical layout were produced and calibrated,
namely a binary mask (CoG) and a half-tone phase shifting mask (193MoSi PSM). We will in particular describe the
applied calibration procedures and cross-correlate the results from different high resolution metrology tools, like SEM,
UV microscopy and AFM. The layout of the CD photomask standard contains isolated as well as dense line features in
both tones with nominal CD down to 100 nm. Calibration of the standards was performed at PTB by UV microscopy and
LV-SEM, supported by additional AFM measurements. For analysis of the measured high resolution microscopy images
and the deduced profiles appropriate signal modeling was applied for every metrology tool, which allows a meaningful
comparison of geometrical parameters of the measured calibration structures. By this approach, e.g. the deduced feature
widths at the top of the structures and the widths at 50% height of the structures can be related to the measured edge angles.
The linearity e. g. of the measured top CD on different type of structures on the CoG CD standard was determined
to be below 5 nm down to line feature dimensions well below 200 nm.
Different type of CD metrology instrumentation is in use today for production control of photomasks, namely SEM,
AFM as well as optical microscopy and optical scatterometry is emerging, too. One of the challenges in CD metrology is
to develop a system of cross calibration which allows a meaningful comparison of the measurement results of the different
systems operated within a production environment. Here it is of special importance to understand and also to be able
to simulate the response of different metrology instrumentation to variations in sidewall profile of features on photomasks.
We will report on the preparation of a special COG test mask with an intended variation of sidewall features
and the subsequent metrological characterization of this mask in different type of CD instrumentation. The discussion of
the measurement results will be accompanied by a discussion of the simulation of instrument response to feature sidewall
variation.
The precise targeting of critical dimension (CD) features on photolithographic masks is an essential part of the mask production process. It is straight forward that the usual decrease of specification numbers can only be achieved using cutting edge CD Metrology tools. That also implies that the most advanced CD tool might change from node to node and over time mask houses accommodate a small variety of different tools. Therefore, it is an important task of current mask metrology to ensure accurate matching and calibration and also to transfer these standards precisely over time.
Here, we investigate the influences of the photolithographic mask material and the resist type on critical dimension measurements utilizing one Atomic Force Microscope (AFM), two CD-Scanning electrical microscopes (CD-SEM) by different suppliers and one optical CD tool. Simulating usual mask house strategies we defined one CD tool as golden tool and measured a 700 A chrome mask on it. This reference measurement was then repeated on all other tools and each of them was matched to the golden tool using standard procedures. Once matching was achieved 5 other masks were measured on all tools with exactly the same settings as the reference measurements. In all we varied the material COG, Mosi193, Mosi248, Chrome thickness 700A and 1000A and different resists. We do observe that calibration within the CD SEM tool class works very well for linearity, but with detectable offset in the range of a couple of nm for different reference masks used. Cross-calibration on the other hand from optical CD to CD SEM tools shows significant differences for process variations, layer thickness and different materials. These findings strongly point out that first of all cross calibration is extremely difficult with current metrology tools and can not be utilized for high end products with the necessary precision. And secondly, even matching within tool classes is material dependent which has to be considered for accurate tool to tool matching.
Line edge roughness (LER) has become a standard topic in the semiconductor industry for its possible yield impact on wafer production. Recently a number of studies address its measurement process to increase the reliability of results. Here, we investigated roughness on photo lithographic masks, which is the blue print for wafer production. It is shown that LER influences feature uniformity and thus has a considerable impact on overall mask production yield. To determine the roughness parameters we varied measurement parameters on a scanning electron microscope to optimize reproducibility and repeatability of the obtained values. Two parameters dominate the LER values. The first parameter is the length used to average the signal from the scanning electron microscope and to obtain the position of a single edge point. Good results for this so called summing length were obtained for values above 100 nm. The second important parameter is the total length of the investigated line that is used to calculate the LER. Here, we found that the increase of LER values with increasing investigation length is similar to the well-established behavior on wafers. It was found that the average LER value calculated from various sites saturates at investigation lengths larger than 10 μm, whereas single LER results show no scattering within measurement precision for investigation lengths larger than 30 μm independently of mask position. In comparison to similar investigation on wafer both the summing length as well as the investigation length have to be chosen about one magnitude larger. It is suggested that the multi exposure process of mask creates roughness on length scales of the order of several micrometers.
F. Gans, R. Liebe, J. Richter, Th. Schatz, B. Hauffe, F. Hillmann, S. Dobereiner, H.-J. Bruck, G. Scheuring, B. Brendel, L. Bettin, K.-D. Roth, W. Steinberg, G. Schluter, P. Speckbacher, W. Sedlmeier, T. Scherubl, W. Hassler-Grohne, C. Frase, S. Czerkas, K. Dirscherl, B. Bodermann, W. Mirande, H. Bosse
We report on the results of a recent round robin comparison on new linewidth or CD photomask standards in which several partners from different companies and institutes in Germany were involved. The round robin activity is at the end of a joint project targeting at the development of a new CD mask standard and it was intended to show the performance of the CD mask standard and to test its application in cross-calibration processes. Different type of CD metrology instrumentation was used, namely optical transmission microscopy including water immersion CD microscopes with NA of 1.2 and scanning electron microscopy, supported by additional scanning probe microscopy (SPM/AFM) characterizations. A set of differently processed CD mask standards with smallest line and space structures down to 0.1 μm and based on different mask blanks was produced with identical layout. At the PTB this set of CD standards was calibrated by UV transmission microscopy and by CD-SEM as well. For the round robin an unknown CD mask of the same design as the standards was used and the participants were asked to provide measurement data with their CD metrology tools, referred to their respective PTB calibration standards. It will be shown, that the agreement of measurement data between different CD metrology tools can be significantly improved if proper definitions of the measurand and a metrologically sound approach to signal modelling and interpretation of CD measurement values is applied. The outcome of this comparison provides a valuable source of information for cross calibration issues which are discussed in mask industry today and, moreover, it proves the performance of the newly developed CD mask standard, which now is available to other interested parties, too.
The industry roadmap for IC manufacturing at design rules of 90nm and below foresees low k1-factor optical lithography at 193nm exposure wavelength. Aggressive model-based OPC and Phase Shift Mask technology are being used more and more frequently in order to achieve the extremely tight mask CD specifications required by 90nm technology node. State-of-the-art mask inspection is challenged to detect CD defects close to metrology resolution. Inspection of OPC and PSM masks is critical; OPC feature dimensions are usually near or below the resolution limits of mask exposure. In addition, chrome defects can be semitransparent and change the intensity of light on the wafer. In this paper aerial-image based mask inspection is investigated and presented. The concept inspects a given mask based on its aerial image with selected wafer exposure conditions, thus 'finds only defect which will print'. This paradigm shift in mask inspection philosophy provides the unique opportunities of verifying and controlling the entire aerial image generated by the inspected mask. As reticle enhancement techniques like OPC and EAPSM are designed to enhance the aerial image of a mask, this concept offers a comprehensive way of inspecting these techniques. The focus of the inspection is shifted from detecting every single minor change on mask to detecting what on mask could possibly impact the printing image quality on the wafer. The focus of the paper is to analyze the impact of different exposure and lithography process conditions onto the inspection sensitivity. The standard defect sensitivity and runability test mask UIS10 and other advanced real production masks were printed under different exposure and process conditions resembling production-worthy 193nm lithography processes. The masks then were inspected using Etec's aerial image-based inspection concept. Detection sensitivities and CD variations on the wafer are analyzed and compared.
The paper presents the inspection of embedded attenuated phase shift masks for the 193nm lithography generation using UV-based mask inspection systems. Production issues like light calibration due to the existence of different transmissions on the mask and halftone-specific inspection sensitivity settings are discussed. A mask inspection example is presented and the most severe defect types are analyzed. In addition, the mask is investigated using the Linewidth Bias Monitor (LBM) option of the inspection system used, which provides a critical dimension (CD) uniformity map of the entire mask.
Small structure sizes in the order of half the exposure wavelengths on wafers are nowadays accomplished with optical enhancement methods. Instead of COG the semi-transparent halfton reticles are used to reach a sufficient process window for the production of smaller memory products at low k1. In the semitransparent halftone material (MoSi) the intensity of the incident light is reduced to 6% and the phase is shifted by half of the wavelength (180 degree(s)). In this study halftone PSM for 248nm and 193nm wavelength with programmed defects of different sizes in lines/spaces (l/s) and brick stone structures were examined. With inspection, repair and print tests valid criteria for critical defect sizes were found. The defects were all analyzed with a Zeiss Aerial Image Measurement System (AIMS) and characterized with a mask SEM. Several defects were repaired using a FIB. Finally, this halftone PSM was printed and the defects were analyzed by a wafer SEM. The sizes of the programmed defects were distributed from printing to not printing. Critical defect sizes were clearly defined and the sensitivity of inspection tools for photomasks (KLA and Orbot Aris-i) could be checked.
Kai Peter, Thomas Schaetz, Volodymyr Ordynskyy, Roman Liebe, Martin Verbeek, Gerald Galan, Emanuele Baracchi, Corinne Miramond, Hans-Juergen Brueck, Gerd Scheuring, Thomas Engel, Yair Eran, Karl Sommer, Hans Hartmann
The reduction of wavelength in optical lithography and the use of enhancement techniques like phase shift technology, optical proximity correction (OPC), or off-axis illumination, lead to new specifications for advanced photomasks: a challenge for cost effective mask qualification. `Q-CAP', the Qualification Cluster for Advanced Photomasks, comprising different inspection tools (a photomask defect inspection station, a CD metrology system, a photomask review station and a stepper simulation software tool) was developed to face these new requirements. This paper will show the performance and reliability of quality assessment using the Q-CAP cluster tool for inspection and qualification of photomasks. Special attention is paid to a key issue of mask qualification: the impact of CD deviations, loss of pattern fidelity-- especially for OPC pattern and mask defects on wafer level.
By approaching the physical resolution limits of optical lithography for a given wavelength, data complexity on certain layers of chip layouts increases, while feature sizes decrease. This becomes even more apparent when introducing optical enhancement techniques. At the same time, more and more complex procedures to fracture mask data out of a DRC clean chip-GDS2 require checks on mask data regarding integrity, as well as mask manufacturability and inspectability. To avoid expensive redesigns and large mask house cycle times it is important to find shortcomings before the data are submitted to the mask house. As an approach to the situation depicted, a (Mask) Manufacturing Rule Check (MRC) can be introduced. Aggressive Optical Proximity Correction (OPC) is a special challenge for mask making. Recently, special algorithms for mask inspection of OPC assist features have been implemented by equipment vendors. Structures smaller than two inspection pixels, like assist structures, can be successfully inspected with certain algorithms. The impact of those algorithms on mask pattern requirements and suitable MRC adoptions will be discussed in the present paper.
CD uniformity is one of the key discussion topics in the ramp-up process of new technologies. The impact of mask quality is getting more and more attention in this process. The paper presents improving wafer CD uniformity control by application of new reticle CD qualification procedure. The new procedure is based on combining conventional CD metrology and Linewidth Bias Monitor (LBM) as a standard part of mask inspection.
Stencil masks for Ion Projection Lithography (IPL) are manufactured in a SOI wafer flow process. They consist of a 3 micrometer thick stencil membrane coated by a 0.5 micrometer thick carbonic protection layer. For mask manufacturing, the key parameters which have to be kept under tight control in order to have a high yield are critical dimensions (CD), image placement and defect density. In order to control critical dimensions, the parameters determining CD have to be known in detail. E-beam writing, resist processing, silicon and carbon etching are main contributors. Their impact will be discussed. For CD measurement, different alternatives of tools, optical CD microscopes, AFM and SEM are discussed. Image placement is one of the most critical parameters for IPL stencil masks, as process-induced distortions occur and are to be corrected by a software using FE calculations. Masks usually are specified to 0 defects. Defect inspection results of IPL stencil masks of optical tools are presented, as well as results from e-beam inspection. In addition, defect management for stencil masks in general and cleaning techniques are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.