Carl Budtz-Jorgensen, N. Lund, Niels Westergaard, S. Brandt, Allan Hornstrup, Ib Rasmussen, S. Laursen, S. Pedersen, Rene Kristansen, P. Mogensen, K. Harpo Andersen, I. Rasmussen, Josef Polny, P. Jensen, C. Oxborrow, J. Chenevez, K. Omoe, Veikko Kamarainen, Tor Andersson, Osmi Vilhu, J. Huovelin, Enrico Costa, Marco Feroci, Alda Rubini, E. Morelli, A. Morbidini, Filippo Frontera, Carlo Pelliciari, G. Loffredo, Guido Zavattini, Vittore Carassiti, M. Morawski, G. Juchnikowski, Victor Reglero, J. Peris, V. Collado, Juana Rodrigo, F. Perez, Jose-Luis Requena, S. Larsson, R. Svensson, A. Zdziarski, A. Castro-Tirado, Herbert Schnopper
The INTEGRAL X-ray monitor, JEM-X, (together with the two gamma ray instruments, SPI and IBIS) provides simultaneous imaging with arcminute angular resolution in the 3-35 keV band. The good angular resolution and low energy response of JEM-X plays an important role in the detection and identification of gamma ray sources as well as in the analysis and scientific interpretation of the combined X-ray and gamma ray data. JEM-X is a coded aperture X-ray telescope consisting of two identical detectors. Each detector has a sensitive area of 500 cm2, and views the sky through its own coded aperture mask. The coded masks are located 3.4 m above the detector windows. The detector field of view is constrained by X-ray collimators (6.6° FOV, FWHM).
The TopHat instrument was designed to operate on the top of a high altitude balloon. From this location, the experiment could efficiently observe using a clean beam with extremely low contamination from the far side lobes of the instrument beam. The experiment was designed to scan a large portion of the sky directly above it and to map the anisotropy of the Cosmic Microwave Background (CMB) and thermal emission from galactic dust. The instrument used a one-meter class telescope with a five-band single pixel radiometer spanning the frequency range from 150-600 GHz. The radiometer used bolometric detectors operating at ~250mK. Here, we report on the flight of the TopHat experiment over Antarctica in January, 2001 and describe the scientific goals, the operation, and in-flight performance.
We describe the engineering design and operational concept for a series of three complementary top mounted balloon- borne experiments to measure the Cosmic Microwave Background Radiation anisotropy, culminating in a two week circumpolar flight from McMurdo Station, Antarctica. Each experiment is designed to provide a maximum science return in addition to acting as a pathfinder to the successor flights of top- mounted balloon-borne experiments. The experiment program, named TopHat, will involve the launch and operation of the first far-infrared and microwave telescope flown entirely from the top of a 28 million cubic foot balloon. It utilizes a two axis gimbal pointing system, a one meter Cassegrain optical system with a chopping secondary mirror, and a 3He evaporation cryostat designed to maintain a bolometer detector temperature of 0.25 K for 30 days without cycling. The series of flights will begin with an engineering test flight scheduled for launch in July 1996 from Palestine, Texas, followed by a pointing experiment to be flown from Ft. Sumner, New Mexico in April 1997. A spinning experiment will be launched from Ft. Sumner in April 1998 and Antarctica in December 1998.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.