Kidney stones are often poorly visualized with ultrasound despite the fact that they have a large impedance mismatch. In previous kidney stone studies conducted by our group, we demonstrated that the Mid-Lag Spatial Coherence (MLSC) beamforming method suppresses the incoherent background speckle while enhancing coherent scatterers. This allowed kidney stones to be highlighted. To study this approach in more detail Field-II simulations and in-house phantoms containing kidney stones were used to test the effectiveness of MLSC with different parameters. The number of lags used during beamforming and the brightness of the point target were altered. Then, the CNR, SNR, CR, and PSNR of the phantoms and simulations were compared. The CNR experienced little change between lag ranges, but the SNR and PSNR increased with the start lag. SNR increased by 12.9% ± 2.9% between the lowest and highest lag range while PSNR increased by 27.9% ± 4.6% between the lowest and highest lag range. CR did not change in a regular pattern but remained consistently higher than delay and sum beamforming. We also compare MLSC against short-lag spatial coherence (SLSC) and show that we also see improvements over this method including an increase of MLSC over SLSC ranging between 250% and 401% for PSNR and between 414% and 879% for CR.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.