Tunable and low-power microcavities play a vital role in facilitating the development of large-scale photonic integrated circuits. Among various tuning methods, thermal tuning has gained significant popularity due to its convenience and stability, especially in the fields of optical neural networks and quantum information processing. In recent years, graphene thermal tuning has emerged as a promising technique, offering both tunability and power efficiency by eliminating the need for thick spacers to prevent light absorption. In this study, we propose and fabricate a silicon-based on-chip Fano resonator with graphene nano-heaters. This innovative Fano structure incorporates a scattering block and can be easily manufactured in large quantities. Experimental results demonstrate that the resonator exhibits desirable characteristics, including a high quality factor of approximately 31000 and a low state-switching power consumption of around 1 mW. The temporal responses of the microcavity exhibit satisfactory modulation speed, with a rise time of 9.8 μs and a fall time of 16.6 μs. The findings of this research offer an alternative solution for the future development of large-scale tunable and low-power-consumption optical networks, with potential applications in optical filters and switches.
We study multi-dimension quantum walks and its dimension reduction model. By using an waveguide-based
optical quantum device, we demonstrate the quantum-walk in searching algorithms such as 2-D glued tree and
3-D hypercube graph. We discuss that the use of waveguide-based device is a good candidate to implement the
quantum walks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.