Complexity of clock generator is one of the most important parameters in the design and optimization of switched-capacitor (SC) finite impulse response (FIR) filters. There are different SC FIR filter architectures. Some of them need a simple clock generator but the others require a quite complicated multiphase clock system. In the latter case an external clock system (i.e., outside the integrated circuit) is unrealistic because of a great number of the required external pins. We have implemented various SC FIR filter architectures together with complex internal clock generators in the CMOS 0.8 μm and 0.35 μm technologies. One of the most important problems in the design process was the optimization of waveforms and widths of the clock impulses. SC FIR filters are very sensitive to parameters of clock systems. Thus the clock generators must be designed very precisely. We demonstrate results of the design of the 64-phase clock generator for a programmable rotator SC FIR filter. In our approach the width of the clock impulses is controlled by two external signals. This is a very convenient solution, because optimization of the clock impulses, which was difficult in other approaches, is currently much easier. The internal clock generator area is ca. 0.15 mm2 in the CMOS 0.35 μm technology, i.e., only 7 % of the entire SC FIR filter chip area.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.