Operational short range prediction of Meso-scale thunderstorms for Sriharikota(13.7°N ,80.18°E) has been performed using two nested domains 27 & 9Km configuration of Weather Research & Forecasting-Advanced Research Weather Model (WRF- ARW V3.4).Thunderstorm is a Mesoscale system with spatial scale of few kilometers to a couple of 100 kilometers and time scale of less than an one hour to several hours, which produces heavy rain, lightning, thunder, surface wind squalls and down-bursts.
Numerical study of Thunderstorms at Sriharikota and its neighborhood have been discussed with its antecedent thermodynamic stability indices and Parameters that are usually favorable for the development of convective instability based on WRF ARW model predictions. Instability is a prerequisite for the occurrence of severe weather, the greater the instability, the greater will be the potential of thunderstorm. In the present study, K Index, Total totals Index (TTI), Convective Available Potential Energy (CAPE), Convective Inhibition Energy (CINE), Lifted Index (LI), Precipitable Water (PW), etc. are the instability indices used for the short range prediction of thunderstorms. In this study we have made an attempt to estimate the skill of WRF ARW predictability and diagnosed three thunderstorms that occurred during the late evening to late night of 31st July, 20th September and 2nd October of 2015 over Sriharikota Island which are validated with Local Electric Field Mill (EFM), rainfall observations and Chennai Doppler Weather Radar products. The model predicted thermodynamic indices (CAPE, CINE, K Index, LI, TTI and PW) over Sriharikota which act as good indicators for severe thunderstorm activity.
Continuous measurements of vertical profiles of thermodynamic variables are important for severe weather nowcasting & forecasting over a region instead of radiosonde observations which are available once or twice daily. Microwave Radiometer (MWR) provides high quality of thermodynamic (temperature, water vapor, and cloud liquid) soundings up to an altitude of 10 Kms in the clear and cloudy weather conditions except during heavy rainfall. Retrievals of MWR profiles are based on the intensity of the atmospheric radiation at selected frequencies (22-30 GHz) & (51-59 GHz) with high temporal and vertical resolution in the troposphere. The MWR used in the present study is TP/WVP-3166A, measures the intensity of radiation at 8 water vapor channels and 14 oxygen channels which is installed at Sriharikota in June. In this paper we analyzed the thermodynamic indices derived from MWR profiles during severe convective thunderstorms for Sriharikota region.
MWR derived thermodynamic profiles are compared with radiosonde observations during rainy & non rainy days. MWR temperature profiles and vapor density profiles are well correlated with the observations with a cold bias of 1.5°C & 2.5°C and with a dry bias of 0.37 g/m3 & 0.04 g/m3respectively. For this we considered 10 thunderstorm cases from June to November 2014 analysed with indices K index, MDPI, CAPE, Windex, KO index, L index, S index, Showalter index, Total totals index, Vertical totals along with integrated liquid water and vapour density. MDPI, CAP index, Windex, Kindex, Lindex and convective temperature were best performed indices two hours prior to thunderstorm over SHAR region.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.