Optical waveguides were fabricated with femtosecond pulsed lasers on glass and characterized by transmission measurements. Glass waveguides were later used for excitation of the whispering gallery modes in a silicon microsphere. The coupling between the silicon microsphere and the femtosecond laser inscribed optical waveguide was simulated in both 90° elastic scattering and 0° transmission spectra. The silicon microsphere whispering gallery modes are available for both in the transverse electric and transverse magnetic polarizations with a spectral mode spacing of 0.25 nm. Optical resonances on silicon microsphere integrated with femtosecond laser written optical waveguides may lead to future quantum optical communication devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.