In this work we show how dynamic speckle information can be extracted directly from digital holograms. This allows improving the analysis and characterization of dynamic phenomena by combining dynamic speckle with digital holographic interferometry measurements. We have studied the drying process of paint coatings, which is a typical study case in the field of dynamic speckle characterization, since the speckle activity (SA) of drying coatings is known to decay smoothly as a function of time. We recorded both holograms and speckle images during the process. In this way, we could compare the evolution of global SA calculated from speckle images by a standard method with the evolution of speckle correlation extracted directly from the holograms. The results obtained from both methods have shown to be in good agreement.
In this work we present a characterization of yeast dynamic speckle activity during growth in an isolated agar culture medium. We found that it is possible to detect the growth of the microorganisms even before they turn out to be visible. By observing the time evolution of the speckle activity at different regions of the culture medium we could extract a map of the growth process, which served to analyze how the yeast develops and spreads over the agar's medium. An interesting point of this study concerns with the influence of the laser light on the yeast growth rate. We have found that yeast finds hard to develop at regions with higher laser light illumination, although we used a synchronous system to capture the speckle pattern. The results obtained in this work would serve us as a starting point to fabricate a detector of growing microorganism colonies, with obvious interesting applications in diverse areas.
In this work we have studied the dynamic speckle patterns of mucor fungi colonies, which were inoculated on different samples. We were interested in analyzing the development of fungi colonies in bones, since during the last two years, a series of infections by mucor fungi have been reported on patients from different hospitals in Argentina. Coincidentally, all of these infections appeared on patients that were subjected to a surgical intervention for implantation of a titanium prosthesis. Apparently, the reason of the infection was a deficient sterilization process in conjunction with an accidental contamination. We observed that fungi growth, activity and death can be distinguished by means of the dynamic speckle technique.
This work seeks to determine the age of a fruit from observation of its dynamic speckle pattern. A mobile speckle pattern originates on the fruit's surface due to the interference of the wavefronts reflected from moving scatterers. For this work we analyzed two series of photographs of a strawberry speckle pattern, at different stages of ripening, acquired with a CMOS camera. The first day, we took ten photographs at an interval of one second. The same procedure was repeated the next day. From each series of images we extracted several statistical descriptors of pixel-to-pixel gray level variation during the observation time. By comparing these values from the first to the second day we noticed a diminution of the speckle activity. This decay demonstrated that after only one day the ripening process of the strawberry can be detected by dynamic speckle pattern analysis. For this study we employed a simple new algorithm to process the data obtained from the photographs. This algorithm allows defining a global mobility index that indicates the evolution of the fruit's ripening.
Metallic structures made of ribbed iron bars (ADN-420) are of common use in sheds and supporting structures. Usually, trusses are constructed with many pieces of ribbed iron bars, combined together through a welding process. Although ribbed iron manufacturers do not recommend this type of structure it is still frequently used. The main weakness of these trusses is the welding point because ribbed iron is not a material suitable for welding. This work presents results obtained from an analysis of welding points between ribbed iron bars extracted from a collapsed truss, by means of conventional (optical) and digital holographic interferometry (HI and DHI, respectively). The experiments were divided in two different series of studies. The first series were performed by HI on metallographic samples while the second series were done by DHI on different welding points. These results were complemented by metallographic analysis made in an external laboratory. DHI indicated that the bars did not have important failures but evidenced defects in one of the welding points under analysis. This information together with metallographic results allowed inferring that the collapse was probably due to an error in the design of the structure, since the iron bars were out of standard compliance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.