Achieving smooth and efficient slew movements on telescope mounts is crucial for minimizing structural stress, reaching maximum velocities, and ensuring efficient operation. Traditional slew trajectory generation methods often fall short in optimizing trajectories for time, resulting in unnecessarily long slew times that reduce telescope efficiency and potentially affect observation opportunities. Additionally, traditional methods often fail to converge smoothly to tracking velocities, leading to abrupt changes in motion that can compromise settling time. This paper presents a novel time-optimal jerk-limited trajectory generator algorithm for slew movements and its current implementation at the SOAR telescope as part of the Mount Control Upgrade Project. This algorithm effectively addresses these limitations by simultaneously optimizing for user-defined constraints on position, velocity, acceleration, and jerk while achieving minimum time. The algorithm produces a jerk-constrained trajectory that converges to a constant velocity reference specified by position, velocity, and time (PVT) commands, ensuring smooth and efficient convergence to tracking velocities while minimizing structural stress and settling time. The proposed algorithm is simple to implement and can be used to generate smooth slew trajectories in telescopes and actuators in general.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.