The ARCSTONE project objective is to acquire accurate measurements of the spectral lunar reflectance from space, allowing the Moon to be used as a high-accuracy SI-traceable calibration reference by spaceborne sensors in low-Earth and geostationary orbits. The required spectral range is 350 to 2300 nm with 4-nm sampling. The ARCSTONE approach is to measure solar and lunar spectral irradiances with a single set of optics and determine spectrally resolved lunar reflectances via a direct ratioing method, eliminating long-term optical degradation effects. Lunar-irradiance values, derived from these direct reflectance measurements, are enabled by independently measured SI-traceable spectral solar irradiances, essentially using the Sun as an on-orbit calibration reference. In an initial attempt to demonstrate this approach, a prototype ultraviolet-visible-near infrared (348 to 910 nm) instrument was designed, fully assembled, characterized, and field tested. Our results demonstrate that this prototype ARCSTONE instrument provides a dynamic range larger than 106, which is necessary to directly measure both the solar and lunar signals, and suggest uncertainties better than 0.5% (k = 1) in measuring lunar spectra can be achieved under proper operational scenarios. We present the design, characterization, and proof-of-concept field-test of the ARCSTONE instrument prototype.
Calibration accuracy and long-term precision are key on-orbit performance metrics for Earth observing spaceborne sensors. The accuracy and consistency of environmental measurements across multiple instruments in low Earth and geostationary orbits are directly connected to the scientific understanding of complex systems, such as Earth’s weather and climate. It is common for instruments to carry on-board references for calibration at various wavelengths, but these are subject to degradation with time spent in-orbit, and also increase complexity, mass and power requirements.
ARCSTONE is a mission concept that provides a solution to the challenge of achieving and maintaining required instrument calibration accuracy on-orbit in the reflected solar wavelength range. As an orbiting spectrometer flying on a small satellite in low Earth orbit, ARCSTONE will provide lunar spectral reflectance with accuracy sufficient to establish the Moon as an SI-traceable absolute calibration standard for past, current, and future Earth weather, land imaging, and climate sensors in both low and geostationary Earth orbits.
The ARCSTONE instruments are required to provide spectral measurements in a thermal environment that varies by 40 °C or more depending on whether the instrument is in direct sunlight or shade. A Structural, Thermal, and Optical Performance (STOP) analysis is conducted to assess the robustness of these instruments in this thermal setting and to highlight areas for possible design improvement. The analysis is performed for transient thermal environments representing a thermal vacuum chamber (TVAC) test. Analysis was performed for both the ultraviolet – visible (UVVNIR) and infrared (SWIR) instruments, however, this paper will focus solely on the UVVNIR instrument. Additional considerations for the future flight units are presented, including modeling effects of preloads and sliding of lenses in their mounts on outcomes of the thermoelastic model. The ARCSTONE instrument design has been optimized based on the results of this analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.