An active quenching circuit in 0.35 μm bipolar complementary metal oxide semiconductor (BiCMOS) technology with a high quenching slew rate is introduced. Quenching transients of an integrated single-photon avalanche diode (SPAD) measured by means of an integrated mini-pad are shown. An NPN transistor as quenching switch enables an active quenching time of 350 ps from an excess bias voltage of 6.6 V and a quenching slew rate of 15 V/ns. Active resetting of the SPAD can be achieved in 550 ps. The power consumption of the BiCMOS quenching circuit is 8.6 mW at 40 Mcounts/s and 3 mW in the idle state.
The use of a physical guard ring in CMOS single-photon avalanche diodes (SPADs) based on n + /(deep)p-well and p + /(deep)n-well structures is a common solution to control the electric field of the SPADs periphery and prevent the premature lateral breakdown. However, this leads to a decrease of the detection efficiency, i.e., the fill-factor, especially when the SPADs size is reduced. Our paper presents an experimental and simulation study on replacing the physical guard ring by a virtual guard ring to improve the fill-factor and the scalability of a n + / p-well SPAD implemented in 0.35-μm pin-photodiode CMOS technology. Accordingly, the optimization of the virtual guard ring and its superiority at downscaling are discussed, and the SPAD scalability in size with respect to the fill-factor is quantified in this technology.
Experimental demonstration of a quantum random number generator based on one single-photon avalanche diode (SPAD) detector, a T / ( T − t ) pulse-shaped laser, and an field-programmable gate array (FPGA) acquisition module is presented. An integrated laser driver drives an external laser diode at 670 nm wavelength, whereas the SPAD with a photon detection probability of 18.5% is integrated together with an active quenching-resetting circuit. The SPAD detector generates counts for the interarrival time (IAT) measurement system implemented in an FPGA, where the change of the IATs between consecutive pulses is used to derive a random bit stream. It is shown how the application of a pulse-shaped laser driver can increase the performance of the system as compared to the continuous-wave operation of the laser diode to achieve the maximum generation rate of 5 Mbps while using a single SPAD. The generated numbers pass all randomness tests of the National Institute of Standards and Technology (NIST), Dieharder, and ENT test (pseudorandom number sequence test) suits.
A monolithic optical receiver containing four single-photon avalanche diodes (SPADs) fabricated in 0.35-μm high-voltage (HV) CMOS is introduced and compared with two 4-SPAD receivers realized in pin-photodiode CMOS belonging to the same process family. This HV-CMOS SPAD receiver achieves sensitivities of −55.1 dBm at 50 Mbit / s and −52.0 dBm at 100 Mbit / s, both with digital processing, a bit error rate (BER) of 2 × 10 − 3, and return-to-zero coding using a wavelength of 642 nm. Also at 143 Mbit / s, this BER is achievable. This receiver is especially interesting for applications in which low light intensities can be expected, such as quantum key distribution, optical communications from deep space, and visible light communication for short-range consumer applications.
We investigate single-photon avalanche diodes with a thick absorption zone leading to a high photon detection probability in the near-infrared spectrum, e.g., to 27.9% at 850 nm. Furthermore, modulation doping for tuning the breakdown voltage in single-photon avalanche diodes is used. Modulation doping allows for reduction of the effective doping in the structure during the design phase without process modifications. We compare a modulation doped version with a single-photon avalanche diode not using this technique. We prove that both versions are operational. The modulation doped version shows a reduced dark count rate and afterpulsing probability at the cost of a reduced photon detection probability.
A fully integrated single-photon avalanche diode (SPAD) using a high-voltage quenching circuit fabricated in a 0.35-μm CMOS process is proposed. The quenching circuit features a quenching voltage of 9.9 V, which is three times the nominal supply voltage to increase the photon detection probability (PDP). To prove the quenching performance, the circuit has been integrated together with a large-area SPAD having an active diameter of 90 μm. Experimental verification shows a maximum PDP of 67.8% at 9.9 V excess bias at a wavelength of 642 nm.
We demonstrate the automatic thermal alignment of photonic components within an integrated optical switch. The WDM optical switch involves switching elements, wavelength de-multiplexers, interleavers and monitors each one needing independent control. Our system manages rerouting of channels coming from four different directions, each carrying 12, 200GHz spaced, wavelengths into eight add/drop ports. The integrated device includes 12 interleavers, which can act either as optical de-interleavers to split the optical signal into odd and even channels or as optical interleavers that recombine the odd and even channels coming from the switching matrix. Integrated Ge photodiodes are placed in key positions within the photonic integrated circuit (PIC) are serve for monitoring. An electronic integrated circuit (EIC) drives the photonic elements by means of dedicated heating circuits (824 on-board heater control cells, 768 for the switching elements and 56 for the interleavers and the mux/de-mux) and reads out the Ge diodes photocurrent through TIAs. We applied a stochastic optimization algorithm to align the spectral response of the interleavers to the ITU grid. We exploit the thermo-optic effect to shift the interleavers pass-band in a desired spectral position. The interleavers are provided with dedicated metallic heaters that can be operated in order to tune the interleaver response, which is typically misaligned due to fabrication inaccuracies. The experimental setup is made of a tunable laser coupled with one input port of optical switch. The optimization algorithm is implemented via a software to drive the EIC till finding the best heating configuration (on the two branches of the interleaver) on the basis of the monitor diode-feedback. This way, the even and odd wavelengths input in the interleaver are directed toward the wanted lines within the switching matrix. Our method has been used for aligning the micro-ring based switching elements in the PIC as well. In that case, the integrated Ge photodiodes have been used to align the photonic components in the PIC in order to enable different pathways for the routing or the broadcasting operation of the optical switch. With no bias applied to the heaters of the switching elements, the optical signal is expected to be maximum at the through port. When the micro-ring heaters are biased, the feedback controller finds the best set of heating values that minimize the optical power at the through port of the switching node. This way, the optical signal is coupled in the drop port and the node is enabled for switching. The algorithm, implemented in LabVIEW, converges over multiple instances and it is robust against stagnation. This work aims at enabling the automatic reconfiguration/restoration of the whole WDW optical switch.
Time-of-flight (TOF) range sensors acquire distances by means of an optical signal delay measurement. As the signal travels at the speed of light, distance resolutions in the subcentimeters range require a time measurement resolution that is in the picoseconds range. However, typical clock synthesizers and digital buffers possess cycle-to-cycle jitter values of up to hundreds of picoseconds, which can potentially have a noticeable impact on the TOF system performances. In this publication, we investigate the influence of two common types of cycle-to-cycle jitter distributions on the measured distance. This includes a random Gaussian distribution, which is caused by, e.g., stochastic noise sources, and a discrete jitter distribution, which is found when timing constraints fail in synchronous digital designs. It was demonstrated that a Gaussian cycle-to-cycle jitter has only a negligible impact on the performance of the TOF distance sensors up to a standard deviation of 1 ns of the Gaussian jitter distribution. However, even the discrete cycle-to-cycle jitter investigated in its simplest form lowers the distance precision of the TOF sensor by a factor of 2.86, i.e., the standard deviation increases from 2.9 to 8.3 mm.
Within this work a single pixel Time-of-Flight (TOF) based range finder is presented. The sensor is fabricated in a 0.35 μm 1P4M CMOS process occupying an area of 45 × 60 μm2 at ~50% fill factor. It takes advantage of the integrated PIN photodiode, representing, to the best knowledge of the author, the first reported TOF device done in this technology with a PIN detector. The measurement results show a standard deviation of 1 cm for a total integration time of 2.2 ms and a received optical power of 10 nW. Furthermore, the maximal measured integration time per single phase step is slightly below 1 ms, being an improvement by the factor of 40 over the previous work using a similar approach. As proven with the measurements, the background light influence on the measured distance can be neglected even if the dc light is by the factor of 600 larger than the modulation signal.
Time-of-Flight (TOF) 3D cameras determine the distance information by means of a propagation delay measurement. The delay value is acquired by correlating the sent and received continuous wave signals in discrete phase delay steps. To reduce the measurement time as well as the resources required for signal processing, the number of phase steps can be decreased. However, such a change results in the arising of a crucial systematic distance dependent distance error. In the present publication we investigate this phase dependent error systematically by means of a fiber based measurement setup. Furthermore, the phase shift is varied with an electrical delay line device rather than by moving an object in front of the camera. This procedure allows investigating the above mentioned phase dependent error isolated from other error sources, as, e.g., the amplitude dependent error. In other publications this error is corrected by means of a look-up table stored in a memory device. In our paper we demonstrate an analytical correction method that dramatically minimizes the demanded memory size. For four phase steps, this approach reduces the error dramatically by 89.4 % to 13.5 mm at a modulation frequency of 12.5 MHz. For 20.0 MHz, a reduction of 86.8 % to 11.5 mm could be achieved.
Correlation based time-of-flight systems suffer from a temperature dependent distance measurement error induced by the illumination source of the system. A change of the temperature of the illumination source, results in the change of the bandwidth of the used light emitters, which are light emitting diodes (LEDs) most of the time. For typical illumination sources this can result in a drift of the measured distance in the range of ~20 cm, especially during the heat up phase. Due to the change of the bandwidth of the LEDs the shape of the output signal changes as well. In this paper we propose a method to correct this temperature dependent error by investigating this change of the shape of the output signal. Our measurements show, that the presented approach is capable of correcting the temperature dependent error in a large range of operation without the need for additional hardware.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.