Time-variant Free-Space Optical channel behaviour is analysed for temporal variations of C2n values, satellite motion and satellite passes. These variations lead to non-stationary statistical properties of the irradiance at the receiver. The analyses are based on representative link models and complemented by measured data from recent test campaigns. These are the 10km’s near-horizontal field test with the TOMCAT demonstrator terminal and the in-orbit test between the SmallCAT terminal onboard the NorSat-TD LEO microsatellite and the TNO optical ground station GOCAT in The Hague. The study shows substantial variations of the statistical properties of the irradiance for LEO satellite motion and predominantly for time-variant C2n behaviour. For variations of satellite passes–with respect to the ground station–the sensitivity of irradiance properties over the full pass is less pronounced. An analysis of the probability distribution of elevation angles over all satellite passes reveals a high probability of low elevation links.
For the next generation of very high throughput communication satellites, free-space optical (FSO) communication between ground stations and geostationary telecommunication satellites is a potential solution to overcome the limitations of RF links. To mitigate atmospheric turbulence effects, TNO proposes Adaptive Optics (AO) to apply uplink pre-correction. As a successor of Optics Feeder Link Adaptive Optics (OFELIA) breadboard [1], [2], the Terabit Optical Communication Adaptive Terminal (TOmCAT) project phase 2 aims to demonstrate the AO pre-correction technology for a terabit Optical Ground Station (OGT) in a ground-to-ground link field test over 10 km. Within this demonstrator an upgraded version of the OFELIA breadboard is used as optical bench for the AO (pre-)correction, but moreover the demonstrator enables the (future) integration of equipment for the final OGT configuration including the Beam Multiplexer (BMUX) and communication equipment. Apart from the OGT demonstrator, the overall layout of the field test has been upgraded, including the test site and the Ground Support Equipment (GSE), with the goal to create a better understanding of the encountered link phenomena and the instant (turbulence) conditions at which it was measured. New additions to the GSE are several weather stations placed along the link path to quantify the local turbulence and to relate the measured link performance to the instant turbulence conditions. The test campaign is split in two successive field tests: First the AO Demonstrator evaluates the upgraded AO pre-correction performance with a single non-modulated link, followed by the OGT Demonstrator which will include the multiplexing of multiple uplink channels and RF end-to-end modems to prove the technical feasibility of supporting a terabit communication link. This paper covers the design of the AO demonstrator and GSE, the field test layout and the preliminary results for the AO demonstrator field test. For the downlink correction the residual Wave Front Error (WFE) is presented. The pre-correction performance is depicted in the uplink transmission loss and scintillation, all as function of the encountered turbulence conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.