Quality assurance has been recognized as crucial for the success of population-based breast cancer screening programs using x-ray mammography. Quality guidelines and criteria have been defined in the US as well as the European Union in order to ensure the quality of breast cancer screening. Taplin et al. report that incorrect positioning of the breast is the major image quality issue in screening mammography. Consequently, guidelines and criteria for correct positioning and for the assessment of the positioning quality in mammograms play an important role in the quality standards. In this paper we present a system for the automatic evaluation of positioning quality in mammography according to the existing standardized criteria. This involves the automatic detection of anatomic landmarks in medio- lateral oblique (MLO) and cranio-caudal (CC) mammograms, namely the pectoral muscle, the mammilla and the infra-mammary fold. Furthermore, the detected landmarks are assessed with respect to their proper presentation in the image. Finally, the geometric relations between the detected landmarks are investigated to assess the positioning quality. This includes the evaluation whether the pectoral muscle is imaged down to the mammilla level, and whether the posterior nipple line diameter of the breast is consistent between the different views (MLO and CC) of the same breast. Results of the computerized assessment are compared to ground truth collected from two expert readers.
Positron Emission Tomography (PET) images provide functional or metabolic information from areas of high concentration of [18F]fluorodeoxyglucose (FDG) tracer, the "hot spots". These hot spots can be easily detected by the eye, but delineation and size determination required e.g. for diagnosis and staging of cancer is a tedious task that demands for automation. The approach for such an automated hot spot segmentation described in this paper comprises
three steps: A region of interest detection by the watershed transform, a heart identification by an evaluation of scan lines, and the final segmentation of hot spot areas by a local threshold. The region of interest detection is the essential step, since it localizes the hot spot identification and the final segmentation. The heart identification is an example of how to differentiate between hot spots. Finally, we demonstrate the combination of PET and CT data. Our method is applicable to other techniques like SPECT.
KEYWORDS: Image segmentation, Data modeling, 3D modeling, Magnetic resonance imaging, Cardiovascular magnetic resonance imaging, Natural surfaces, Statistical modeling, Medical imaging, Eye models, Binary data
Cardiac MRI has improved the diagnosis of cardiovascular diseases by enabling the quantitative assessment of functional parameters. This requires an accurate identification of the myocardium of the left ventricle. This paper describes a novel segmentation technique for automated delineation of the myocardium. We propose to use prior knowledge by integrating a statistical shape model and a spatially varying feature model into a deformable mesh adaptation framework. Our shape model consists of a coupled, layered triangular mesh of the epi- and endocardium. It is adapted to the image by iteratively carrying out i) a surface detection and ii) a mesh reconfiguration by energy minimization. For surface detection a feature search is performed to find the point with the best feature combination. To accommodate the different tissue types the triangles of the mesh are labeled, resulting in a spatially varying feature model. The energy function consists of two terms: an external energy term, which attracts the triangles towards the features, and an internal energy term, which preserves the shape of the mesh. We applied our method to 40 cardiac MRI data sets (FFE-EPI) and compared the results to manual segmentations. A mean distance of about 3 mm with a standard deviation of 2 mm to the manual segmentations was achieved.
KEYWORDS: Process modeling, Systems modeling, Picture Archiving and Communication System, Radiology, Medicine, Imaging systems, Modeling, Information technology, System integration, Data modeling
For the next generation integrated information systems for health care applications, more emphasis has to be put on systems which, by design, support the reduction of cost, the increase inefficiency and the improvement of the quality of services. A substantial contribution to this will be the modeling. optimization, automation and enactment of processes in health care institutions. One of the perceived key success factors for the system integration of processes will be the application of workflow management, with workflow management systems as key technology components. In this paper we address workflow management in radiology. We focus on an important aspect of workflow management, the generation and handling of worklists, which provide workflow participants automatically with work items that reflect tasks to be performed. The display of worklists and the functions associated with work items are the visible part for the end-users of an information system using a workflow management approach. Appropriate worklist design and implementation will influence user friendliness of a system and will largely influence work efficiency. Technically, in current imaging department information system environments (modality-PACS-RIS installations), a data-driven approach has been taken: Worklist -- if present at all -- are generated from filtered views on application data bases. In a future workflow-based approach, worklists will be generated by autonomous workflow services based on explicit process models and organizational models. This process-oriented approach will provide us with an integral view of entire health care processes or sub- processes. The paper describes the basic mechanisms of this approach and summarizes its benefits.
KEYWORDS: Process modeling, Systems modeling, Radiology, Control systems, Information technology, Computer architecture, Picture Archiving and Communication System, Data modeling, Standards development, Computer programming
Workflow management (WfM) is an emerging field of medical information technology. It appears as a promising key technology to model, optimize and automate processes, for the sake of improved efficiency, reduced costs and improved patient care. The Application of WfM concepts requires the standardization of architectures and interfaces. A component of central interest proposed in this report is a generic work list handler: A standardized interface between a workflow enactment service and application system. Application systems with embedded work list handlers will be called 'Workflow Enabled Application Systems'. In this paper we discus functional requirements of work list handlers, as well as their integration into workflow architectures and interfaces. To lay the foundation for this specification, basic workflow terminology, the fundamentals of workflow management and - later in the paper - the available standards as defined by the Workflow Management Coalition are briefly reviewed.
KEYWORDS: Process modeling, Radiology, Systems modeling, Picture Archiving and Communication System, Medicine, Data modeling, Control systems, Image processing, Modeling, Process control
In a situation of shrinking health care budgets, increasing cost pressure and growing demands to increase the efficiency and the quality of medical services, health care enterprises are forced to optimize or complete re-design their processes. Although information technology is agreed to potentially contribute to cost reduction and efficiency improvement, the real success factors are the re-definition and automation of processes: Business Process Re-engineering and Workflow Management. In this paper we discuss architectures for the use of workflow management systems in radiology. We propose to move forward from information systems in radiology (RIS, PACS) to Radiology Management Systems, in which workflow functionality (process definitions and process automation) is implemented through autonomous workflow management systems (WfMS). In a workflow oriented architecture, an autonomous workflow enactment service communicates with workflow client applications via standardized interfaces. In this paper, we discuss the need for and the benefits of such an approach. The separation of workflow management system and application systems is emphasized, and the consequences that arise for the architecture of workflow oriented information systems. This includes an appropriate workflow terminology, and the definition of standard interfaces for workflow aware application systems. Workflow studies in various institutions have shown that most of the processes in radiology are well structured and suited for a workflow management approach. Numerous commercially available Workflow Management Systems (WfMS) were investigated, and some of them, which are process- oriented and application independent, appear suitable for use in radiology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.