New adaptive edge detection algorithms based on volumetric neighborhood size estimation for automatic three or higher dimensional biomedical image analysis are presented in this work. The proposed methods are based on nonparametric three-dimensional kernel functions obtained using the "three-term" orthogonal-type polynomial equations for different types of orthogonal polynomial families. The obtained multidimensional kernels can be of any volumetric neighborhood size and order of approximation. The optimal sizes of volume estimates, produced by the multidimensional convolution of the kernels with the multidimensional biomedical images, are controlled by a switch type variance dependent volume size selector. The proposed methods show excellent results in approximating the true position and shape of the edges of different organs of the human body represented in multidimensional biomedical images, which can have nonuniform voxel size and anisotropic image intensity and noise distribution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.