The purpose of this study was to determine whether three investigators would produce similar results when reading/scoring the same breast infrared images. They used their standard methods of analysis (subjective to semi-objective analysis). Two of the investigators submitted breast infrared images from 71 screened patients. The images were stored in a database and displayed for scoring by three investigators (two who submitted the data and one additional reader). The left and right breasts were analyzed separately. The investigators submitted their scores to the database without knowledge of the scores of the other two investigators. Overall, concordance of results among all three investgators was 76% (all three investigators' readings agreed on 107 of 141 breasts). Comparison of paired results of the three investigators resulted in 79 to 94% agreement for the six comparisons (three investigators and two breasts) with an overall agreement of 88% (371 of 424 paired comparisons). This preliminary comparison of three investigators' blinded results of breast infrared image readings from a screening population, demonstrates that breast infrared images taken at different Centers with different techniques can be interpreted by different investigators with very similar results. As the database grows there will be an increase in the number and percentage of patients with abnormal infrared images (high risk and breast cancer patients). This will allow a better and more thorough analysis of the results to refine and standardize the reading technique, and further to allow the assessment of previously untested algorithms with this unique database.
Determination of burn wound depth is at present left to the surgeons visual examination. Many burn wounds are obviously, by visual inspection, superficial 2 degree burns or true 3 degree burns. However, those burn wounds that fall between the obvious depth burns are difficult to assess visually, and therefore wound depth determination often requires waiting 5 to 7 days postburn. Initially, 10 burn patients underwent IR imaging at various times during the evaluation of their burn wounds. These patients were followed to either healing or skin grafting. The IR images were then reviewed to determine their accuracy in determining the depth of the wound. IR imaging of burn wounds with focal plane staring array midrange IR systems appears promising in determination of burn depth one to two days postburn. This will allow clinical decision regarding operative or nonoperative intervention to be made earlier, thus decreasing hospital stays and time to healing.
Infrared imaging of the breasts has been shown to be of value in risk assessment, detection, diagnosis and prognosis of breast cancer. However, infrared imaging has not been widely accepted for a variety of reasons, including the lack of standardization of the subjective visual analysis method. The subjective nature of the standard visual analysis makes it difficult to achieve equivalent results with different equipment and different interpreters of the infrared patterns of the breasts. Therefore, this study was undertaken to develop more objective analysis methods for infrared images of the breasts by creating objective semiquantitative and quantitative analysis of computer assisted image analysis determined mean temperatures of whole breasts and quadrants of the breasts. When using objective quantitative data on whole breasts (comparing differences in means of left and right breasts), semiquantitative data on quadrants of the breast (determining an index by summation of scores for each quadrant), or summation of quantitative data on quadrants of the breasts there was a decrease in the number of abnormal patterns (positives) in patients being screen for breast cancer and an increases in the number of abnormal patterns (true positives) in the breast cancer patients. It is hoped that the decrease in positives in women being screened for breast cancer will translate into a decrease in the false positives but larger numbers of women with longer follow-up will be needed to clarify this. Also a much larger group of breast cancer patients will need to be studied in order to see if there is a true increase in the percentage of breast cancer patients presenting with abnormal infrared images of the breast with these objective image analysis methods.
Infrared imaging of the breasts for breast cancer risk assessment with a second generation amber indium antimonide focal plane staring array system was found to produce images superior to a first generation Inframetrics scanning mercury cadmium telluride system. The second generation system had greater thermal sensitivity, more elements in the image and greater dynamic range, which resulted in a greater ability to demonstrate asymmetric heat patterns in the breasts of women being screened for breast cancer. Chi-square analysis for independence of the results from 220 patients with both the scanning and focal plane infrared imaging systems demonstrated that the results from the two systems were strongly associated with each other (p equals .0001). However, the improved image from the second generation focal plane infrared imaging system allowed more objective and quantitative visual analysis, compared to the very subjective qualitative results from the first generation infrared imaging system. The improved image also resulted in an increase in the sensitivity for asymmetric heat patterns with the second generation focal plane system and yielded an increase in the percentage of patients with an abnormal asymmetric infrared image of the breasts from 32.7% with the scanning system to 50.5% with the focal plane system. The greater sensitivity and resolution of the digitized images from the second generation infrared imaging system has also allowed computer assisted image analysis of both breasts, breast quadrants and hot spots to produce quantitative measurements (mean, standard deviation, median, minimum and maximum temperatures) of asymmetric infrared abnormalities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.