Space-based light detection and ranging (LiDAR) sensors have provided valuable insight into the global, vertical distribution of aerosol and cloud layers in Earth’s atmosphere, and, more recently, of the distribution of phytoplankton in the ocean. However, the photodetectors in these sensors lack the performance necessary to capture the vertical structure of cloud tops and ocean phytoplankton to a fidelity sufficient for advancing our understanding of the global water cycle and ocean carbon cycle, respectively. Recent advancements in high-performance single photon avalanche diode (SPAD) arrays promise to enable these measurements, while also offering a sensitivity that will allow significant reductions in laser power and telescope size, with associated sensor-level size, weight, and power (SWaP) savings. To harness the unique benefits of SPADs for these measurements, we propose to develop a large-format array of photon counting SPADs with <10 ns dead time, along with readout integrated circuitry that sums and bins (histograms) photon counts in real time to the desired temporal resolution for the target application. The feasibility of this approach has been investigated with a small-scale 8 × 8 SPAD array proof of concept hardware demonstration developed at Politecnico di Milano, with promising initial results. Progress is reported on designs that will allow scaling the array and readout integrated circuit electronics to the requisite of 128 × 128 size in a chip-scale, low power, photodetector ideal for LiDAR remote sensing of the atmosphere and ocean from SWaP-constrained platforms.
Following on the success of the NASA-CNES CALIPSO/CALIOP space-based cloud-aerosol lidar, which is now approaching its 14th year of continuous operation, NASA Langley Research Center has been advancing space-based lidar mission concepts and related technologies to address future cloud, aerosol and ocean science objectives identified in the 2017 Decadal Survey for Earth Science and Applications from Space. Recently, scientists at NASA Langley have been able to use data from CALIOP to retrieve global ocean biomass, which is a measurement that was never originally envisioned for this instrument, and represents a new scientific frontier for space-based lidar. CALIOP’s measurements complement ocean color records, extending ocean retrievals into nighttime and to high latitudes, and creating a more complete picture of global ocean biomass. Due to detector bandwidth limitations, however, CALIOP, as with ocean color, only obtains column-averaged measurements that are biased towards the surface. To address this limitation, Politecnico di Milano is developing a lidar detector based on a single photon avalanche diode (SPAD) array. This detector is expected to achieve a depth resolution of <1 m in the ocean, and have a detection efficiency and dynamic range that far exceeds that of the analog-readout, PMT-based receiver on CALIOP. Naturally, these same characteristics will also benefit cloud and aerosol retrievals, making SPAD arrays an excellent detector candidate for future space-based atmosphere and ocean lidar missions. Here, we describe potential advantages of fast (~THz) photon counting SPAD arrays, and how they are being developed for this application.
Recent developments on Single Photon Avalanche Diodes (SPADs) have opened the way to the design of single-photon time of flight systems based on very large arrays of detectors. In particular, the exploitation of 3D stacking now allows the use of different technologies to optimize both the detector and the electronics. Very high performance in terms of Photon Detection Efficiency, Dark Count Noise and Afterpulsing probability can be achieved with a dedicated custom technology fabrication process, as the one developed by Politecnico di Milano. Custom SPADs require external high-performance electronics to be properly operated. In 2019, an active quenching circuit able to operate an external custom SPADs with a dead time as short as 6ns has been developed. These results open the way to the exploitation of these detectors in many applications as spaceborne remote sensing. The very short dead time, indeed, means having a quick recovery, that is paramount to investigate the layers below a very bright surface, e.g. to measure the backscatter from plankton immediately below the ocean surface. Targeting the exploitation of a 256x256 SPAD array, we designed a fully integrated front end and processing circuit able to provide the number of impinging photons during time windows as short as 8ns.
In spaceborne LIDAR, the measurement of both intensity and time of flight of a luminous signal is widely used to investigate the atmosphere and the earth surface. In this scenario, a laser flash is sent from a satellite towards the target and a receiver records the intensity versus time: the recorded time correlates with the distance of the scatterer from the source while the intensity of the signal carries information on scatterer type, number density and intermediate extinction. Starting from an 8x8 array of high-performance Single Photon Avalanche Diodes (SPADs) fabricated with a fully planar custom-technology, we developed a module prototype for spaceborne LIDAR. An alignment board is able to provide the alignment of the trigger signal coming from the laser with the start of the acquisition time with an accuracy better than 1ns. Data coming from the SPAD are then summed and a digital word corresponding to the number of counts in time bins as short as 8.3ns.
A dye ring laser is stabilized to a D2a Doppler-free feature of sodium vapor using a LabVIEW®-based, phase-sensitive servo. Locking precision and stability, at better than ±1 MHz, are suitable for Na lidar applications. This performance was achieved with improved digital filtering and new approaches to the problem. The inverse (type II) Chebyshev discrete filter employed demonstrates superior filtering and computational efficiency plus improved flexibility. New approaches include the determination of optimum modulation frequency, laser-tuning sensitivity, and bandwidth requirements via spectral analyses of the noise spectrum, derivative scan, and modulated spectrum. This practice guides a user in selecting the system operation parameters and negotiating the trade-offs involved when expanding the filter's passband. Allan deviation plots provide a quantitative description of the short- and long-term frequency excursions. A comparison of Allan deviation plots before and after locking shows a substantial improvement in stability throughout time scales from 0.10 to 10 s.
Resonance fluorescence Doppler lidars using Doppler shift and spectral broadening effects are the principal instruments to simultaneously measure wind and temperature in the middle atmosphere. Such lidars demand high accuracy, precision, and stability of the laser optical frequency. Current resonance Doppler lidars suffer various problems in frequency stabilization that limit their locking precision and stability. We have addressed these problems by developing a LabVIEW®-based laser frequency locking system. This new system utilizes wavelength-modulation and phase-sensitive-detection techniques in conjunction with a proportional-integral-derivative feedback servo loop. It achieves better than ±1-MHz locking precision and stability over 1 h. The system also remains locked throughout a series of abrupt disturbance tests. Owing to its high locking precision, immunity to electronic and laser noise, reliability, and flexibility in adapting for various systems, we believe that this new system represents a marked improvement in resonance Doppler lidar technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.