Owing to complex application environments and trends of intelligent perception associated, modern zoom systems with enhanced integration, increased imaging speed, decreased physical size, and improved dynamic adaptive adjustment strategies are required under external disturbances. Upon this requirement, reflective deformable mirrors (DMs, a Micro-Optical Electro-Mechanical System (MOEMS) device), which represent novel optoelectronic devices, have propelled the development of fast zooming and high-resolution imaging systems. In this paper, we design a catadioptric zoom system based on transmission fixed lenses and reflection deformable mirrors. The fixed lenses are used to increase the system field angle, increase the entrance pupil diameter, and balance the off-axis aberration caused by a large field of view. For practical application, we also consider the DMs specifications, e.g., the flexible deformation amount of actuator stroke within the effective diameter range. The system enables continuous zooming in the complete focal-length range at a high zoom ratio (10:1), and the full field of view at the wide-angle position is expanded to 20° × 20°, by improving the zoom sensitivity ability and aberration correction. This optical system is conducive to further establishing a stabilized zoom system with image stabilization ability integrated based on DMs.
The influence function of the actuators can be expressed as a Gaussian function. The exponent of the Gaussian function influences the reconstruction precision of the deformable mirror (DM). A finite element model of the PZT stacked array DM with 55 actuators was created, and each actuator was separately controlled. The influence of the structural parameters of the DM on the Gaussian index and coupling coefficient was investigated. Based on the simulation results, the design of the DM was optimized. In addition, using simulation, the fatigue life and working bandwidth of the new model were studied. Specific aberration surfaces were reconstructed. The results showed that the optimized DM had a smaller reconstruction error compared with the pre-optimized model. This study can be used as a reference for the design of DMs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.