This study presents a Bayesian approach based on a color image demosaicking algorithm. The proposed method is composed of pointwise and patchwise measurements. The estimation of the missing pixel is formulated as a maximum a posteriori and a minimum energy function. By utilizing Bayesian theory and some prior knowledge, the missing color information is estimated with a statistics-based approach. Under the maximum a posteriori and Bayesian framework, the desired target image corresponds to the optimal reconstruction given the mosaicked image. Compared with existing demosaicking methods, the proposed algorithm improves the CPSNR, S-CIELAB, FSIM, and zipper effect measurements while maintaining high efficiency. Moreover, it handles Gaussian and Poisson noisy images better than other conventional images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.