Small anomaly detection in ocean evironment is an important problem in airborne remote sensing image processing, especially in hyperspectral data. Traditional algorithms solve this problem by finding the pixels have different appearance pattern with the background. However, these algorithm are not suitable for real-time applications. In this paper, we propose to learn the hyperspectral model of the seawater and localize the targets whose spectral feature do not well fit the trained model. This algorithm only uses historical information and is suitable to be used on airborne line-scanning data. Since hyperspectral property of ocean water is relatively stable, we use Gaussian mixture model to encode the statistical features of the background. Experimental results demonstrated that the proposed algorithm significantly improves processing efficiency in comparison with conventional methods, and maintains high accuracy with regard to other methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.