In this paper, a phase-change-cooled active mirror amplifier with high thermal conductivity composites is presented to
meet the thermal management requirement and the payload limit of laser amplifiers in the space environment. And a
three-dimensional transient model of solid-liquid phase cooling is developed to predict the phase change process and the
thermal effects in the active mirror amplifier, in terms of temperature, thermal stress, thermal deformation and thermal-induced
wavefront distortion. The measured transient temperature distributions agree well with the results of the
transient model, which verify the accuracy of the model. We expect that this investigation will assist in the design and
optimization of the high energy, high average power lasers.
A ultrashort pulse Nd:YAG rod gain medium regenerative amplifier side-pumped by A laser diode array was studied. The SESAM mode locking fiber seed pulses with 10ps pulse duration 1nJ single pulse energy 50 MHz repetition-rate and the wavelength of 1064 nm, was amplified to 1 mJ at 1 kHz by our regenerative amplifier, corresponding to a peak power of 0.1 GW, with the maximum amplification about 3.3×106 . And when the repetition rate changed to 10 kHz, an average power of 6 W was obtained, corresponding to an amplification of 2×106 . The repetition-rate to period doubling of regenerative amplifier pulse was experimentally studied.
We describe the design and experimental result of a LD pumped Nd:YAG laser with 12J energy at repetition rate of 10Hz. The temperature distribution was controlled to less than 2℃ on the surface by means of uniform pump and cooling. The ASE was calculated by energy storage code and fit well with the measurement results which was about 1.72 in average. The beam quality was controlled by means of mechanical design and adjustment and compensation by a home-made deforming mirror. The far field was measured to 3.23 TDL. The stability of energy and pointing were paid great attention and control by means of full absorption and high stability mechanical design. The energy stability was less than1%(RMS) and pointing stability was 73μrad(PtV), which made the laser very comfortable for use.
Laser Inertial Fusion Energy (IFE) has been attracting the interests of the researchers around the world, because of the promising to the future energy. The Yb:YAG was broadly used in the research field of high-peak power and large energy laser with repetition-rate for IFE because of its outstanding performance, including significant thermal and mechanical capacities, long upper energy level lifetime, high quantum efficiency and highly doping capacity. But it exhibits high saturation fluence at room temperature because of the small emission and absorption cross-section. And at the same time this gain material exhibits self-absorption of laser because of the thermal population at lower laser level at room temperature. Ant it appears to have been solved by means of the cryogenic temperature, but the total efficiency of the laser system will be decreased as the use of cryogenic temperature.
The amplified spontaneous emission (ASE) effect of the amplifier can be relaxed by means of edge-cladded absorption material. And the difficulties of edge cladding can be will solved as the emergence of ceramics. But at present the ceramics exhibits high scattering and many disfigurements, which limited the application in the high-power large-energy laser system. So the edge-cladding of Yb:YAG crystal will be a key issue for solution the ASE in amplifier.
In this paper, we will introduce a 10J water-cooled DPSSL system, based on Yb:YAG crystal at room temperature. In this system a new edge cladding method has been used, that the Yb:YAG crystal was edge cladded by Cr:YAG ceramics, which was used as the absorption material of ASE. The amplifier was an active mirror water-cooled room temperature amplifier. With the help of this edge cladding the ASE has been lowered, and about 5 times small signal gain has been obtained in a single pass amplification, which was much higher than the earlier of 2 times. And the wavefront aberrance of the laser beam was also reduced due to the thermal equilibrium between the edge cladding and the gain region. the amplifiers can be stably operated under 10Hz. Finally the output of the laser system was about 7.15J@10Hz and 10.8J@1-2Hz. The total optical-to-optical efficiency was about 8.3% for 1-2Hz (under the condition of 120kW/1ms pumping, 880mJ input and 10.8J output) and 5.6% for 10Hz.
A cryogenic helium gas cooled Yb:YAG multislab amplifier with a longitudinal doping gradient concentration was proposed for developing high energy, high average power laser systems. As a comparison, the performance of the gradient doped amplifier was investigated with other constant and stepped doped amplifiers in terms of energy storage capacity, heat deposition, and amplification, based on the theory of quasi-three-level laser ions, Monte Carlo, and ray-tracing approaches. Improved lasing characteristics with more homogenous distributions of gain and heat load and higher efficiency was achieved in the gradient doped multislab amplifier while lower gain medium volume was required. It is shown that at the optimum operating temperature of 200 K, the maximum output energy of 867.76 J in the gradient doped amplifier was obtained, corresponding to an optical-to-optical efficiency of 22.41%.
KEYWORDS: Fusion energy, Laser amplifiers, High power diode lasers, Optical amplifiers, Pulsed laser operation, Laser systems engineering, Switches, Amplifiers, Reliability, Physics, High power lasers
A unidirectional two-pulse amplifying architecture (UTPA) was proposed to amplify the laser pulses in inertial confinement fusion and fusion energy facilities. Compared with laser output performance in the conventional single pulse amplifier (SPA), the preliminary results show that although the performance in SPA and UTPA with the gain media of Yb:YAG operating at 200K are almost equal with output energies of 8.12 kJ and 8.26 kJ, and extraction efficiencies of 79.5% and 81.4%, respectively; however, at the maximum output in SPA, ΣB increases up to 3.499 rad close to the limitation of 3.5 rad, while in UTPA ΣB is relative small with the value of 1.769 rad, which reduces the nonlinear effects for high power pulses and is beneficial to system reliability and stability. In addition, for achieving a pulse with squared temporal shape, the demands for the pre-shaping ability of the laser system were significantly reduced in UTPA by around 6 times. With ΣB margins in UPTA, it is possible to scale the output performance with high extraction efficiency by increasing the gain coefficient or the slaps.
Large-aperture electro-optical switch based on plasma Pockels cell (PPC) is one of important components for inertial confinement fusion (ICF) laser facility. We have demonstrated a single-pulse driven 4×1 PPC with 400mm×400mm aperture for SGIII laser facility. And four 2×1 PPCs modules with 350mm×350mm aperture have been operated in SGII update laser facility. It is different to the PPC of NIF and LMJ for its simple operation to perform Pockels effect. With optimized operation parameters, the PPCs meet the SGII-U laser requirement of four-pass amplification control. Only driven by one high voltage pulser, the simplified PPC system would be provided with less associated diagnostics, and higher reliability. To farther reduce the insert loss of the PPC, research on the large-aperture PPC based on DKDP crystal driven by one pulse is developed. And several single-pulse driven PPCs with 80mm×80mm DKDP crystal have been manufactured and operated in laser facilities.
We demonstrate the design and performance of an optical switch that has been constructed for the SG-II upgrading
facility. The device is a longitudinal, potassium di-hydrogen phosphate (KDP), 360 mm×360 mm aperture, and 2×1 array electro-optical switch driven by a 20 kV output switching-voltage pulse generator through two plasma electrodes produced at the rise edge of the switching-voltage pulse. The results show that the temporal responses and the spatial performance of the optical switch fulfill the operation requirements of the SG-II upgrading facility.
The energy storage in the Cr4+,Yb:YAG crystal amplifier was stimulated under the conditions of concentration
thickness product 15at.%mm and pumping power density 20kW/cm2 for different aperture and doped Cr4+ and Yb3+density, using the pumping dynamic model for Cr4+,Yb:YAG crystal amplifier. The results indicated that, the density of
energy storage decreases with the increasing of Yb3+ and amplifier aperture in absence of Cr4+; but the co-doped Cr4+ in
Yb:YAG crystal would suppress the ASE in amplifier and affect on the energy storage in the amplifier, the ASE
decreases with the increasing of co-doped Cr4+. But the maximum energy storage in amplifier increases firstly, and then
decreases with the increasing of Cr4+ density. The reason is that, the Cr4+ in amplifier absorb not only the ASE but also
the pumping energy. When less co-doped Cr4+, the ASE in amplifier would be serious, but when more co-doped Cr4+, the
co-doped Cr4+ would absorb more pumping energy. Namely, in order to obtain maximum energy storage there is an
optimized Cr4+ density, which was determined by the Yb3+ density and aperture of amplifier.
Plasma Pockels cell (PPC), which can use a thin crystal to perform the uniform electro-optical effect, is ideal component
as average-power optical switch with large aperture. In this paper, by reformative design and employing a capacity to
share the gas discharge voltage, the DKDP PPC driven by one pulse is realized. As gas breakdown delay time is stable,
and discharge plasma is uniformly filled the full aperture, it meets the demand of plasma electrode for the repetition-rate
PPC with DKDP crystal. A rep-rate plasma Pockels cell (PPC) with Φ30mm aperture has been fabricated. It is optimized
with the limited space of repetition rate diode pumped laser. The specification of the PPC is: static transition of 97.2%,
switching efficiency of 99.8%, the switch rising time of 8.6ns. In the LD pumped Yb:YAG plate laser system, the PPC
can steadily work on 10Hz repetition rate performed as Q-switch. The key problems in PPC are analyzed for
repetition-rate application, and thermo-optical effects are simulated by means of numerical modeling when average
power laser is loaded on the electro-optical crystal. Furthermore, the principium design of rep-rate PPC with
longitudinally conductive cooled structure is described in this paper. It will efficiently abate the thermo-optical effects
under repetition rate application.
A novel method has been proposed to suppress transverse stimulated Raman scattering or transverse
stimulated Brillouin scattering by processing the frequency convector edges into arrises. The mode
analysis indicates that the residual reflection at the edges decreases rapidly with the decrease of arris
angle and the direction of the ray finally reflected back has an angle with the surface of convector. So
with this method transverse stimulated Raman scattering or transverse stimulated Brillouin scattering
can be suppressed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.