Improving on product overlay is one of the key challenges when shrinking technology nodes in semiconductor manufacturing. Using information from non-lithography process steps can unleash overlay improvement potential.1 The challenge is to find intra-wafer signatures by measuring planar distortion. Several previous applications showed that using exposure tool wafer alignment data can improve overlay performance.2 With smart placement of alignment mark pairs in the X and Y direction, it is possible to determine intra-wafer distortion wafer-by-wafer. Both the measurement and modeled results are applied directly as a feed-forward correction to enable wafer level control. In this paper, the capability to do this is evaluated in a feasibility study.
Before each wafer exposure, the photo lithography scanner’s alignment system measures alignment marks to correct for placement errors and wafer deformation. To minimize throughput impact, the number of alignment measurements is limited. Usually, the wafer alignment does not correct for intrafield effects. However, after calibration of lens and reticle heating, residual heating effects remain. A set of wafers is exposed with special reticles containing many alignment marks, enabling intra-field alignment. Reticles with a dense alignment layout have been used, with different defined intra-field bias. In addition, overlay simulations are performed with dedicated higher order intra-field overlay models to compensate for wafer-to-wafer and across-wafer heating.
Advanced processing methods like multiple patterning necessitate improved intra-layer uniformity and balancing monitoring for overlay and CD. To achieve those requirements without major throughout impact, a new advanced mark for measurement is introduced. Based on an optical measurement, this mark delivers CD and overlay results for a specified layer at once. During the conducted experiments at front-end-of-line (FEOL) process area, a mark selection is done and the measurement capability of this mark design is verified. Gathered results are used to determine lithography to etch biases and intra-wafer signatures for CD and overlay. Furthermore, possible use cases like dose correction recipe creation and process signature monitoring were discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.