This will count as one of your downloads.
You will have access to both the presentation and article (if available).
In general, a space environmental qualification of electronic devices combines its susceptibility to radiation induced single event effects (SEE) and the evaluation of permanent degradation effects due to total ionizing dose (TID) and displacement damage dose (DDD). Following a successful qualification test with heavy-ions focusing on SEE, our imaging sensor was subject to a proton irradiation test campaign at Helmholtz-Zentrum Berlin (HZB) for combined TID and DDD testing. To track the sensor evolution, we subdivided the proton fluence into 10 irradiation steps with intermediate measurements. The collected data provide information on the evolution of dark current, light sensitivity and pixels showing randomtelegraph- noise (RTN) on the sensor during a 5-year mission.
The paper describes the manufacturing, integration, and testing of this optical system. It was realized as an all reflective system using metal-based mirrors and a modular, so-called snap-together approach, which allows to simplify the integration of optical systems considerably. Measured r.m.s. wavefront errors of the complete system are in the range of 63 nm to 120 nm, which is compliant with the instrument’s requirements.
Based on the experiences of the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) calibration source MBB3, the results of the surface structuring on the effective emissivity are described analytically and compared to the experimental performance. Different geometries are analyzed and the production methods are discussed. The high-emissivity temperature calibration source features values of 0.99 for wavelength from 5 μm to 10 μm and emissivity larger than 0.95 for the spectral range from 10 μm to 40 μm.
A new method for geometrical sensor calibration is using Diffractive Optical Elements (DOE) in connection with laser beam equipment. Diffractive optical elements (DOE) are optical microstructures, which are used to split an incoming laser beam with a dedicated wavelength into a number of beams with well-known propagation directions. As the virtual sources of the diffracted beams are points at infinity, the resulting image is invariant against translation. This particular characteristic allows a complete geometrical sensor calibration with only one taken image avoiding complex adjustment procedures, resulting in a significant reduction of calibration effort.
We present a new method for geometrical calibration of a thermal infrared optical system, including an thermal infrared test optics and the MERTIS spectrometer bolometer detector. The fundamentals of this new approach for geometrical infrared optical systems calibration by applying diffractive optical elements and the test equipment are shown.
View contact details
No SPIE Account? Create one