In this paper, the deployment systems of a deployable space telescope for CubeSat are proposed. This telescope can achieve a ground resolution less than 1 meter at an orbital altitude of 400 km. Both the primary and secondary mirrors of it can be stowed in 3U volume(100mm×100mm×300mm)during launching period. The functions of the deployment systems include the locking of the primary and secondary mirrors when stowed, the deployment on-orbit, and the active adjustment of the primary mirror segments after deployment. In this paper, firstly, the optical system of deployable telescope is described, then the deployment systems of the telescope are designed. Finally, the modal analysis is carried out using finite element method.
Space-based solar observation has severe requirements for resolution, dynamic range, and signal-to-noise ratio of the camera. In order to acquire high-quality solar image data, this paper proposes a high-resolution electronics system based on Gpixel GSENSE6060 image sensor for space-based solar observation. The system uses XILINX XQ5VFX130T as the timing control of the overall system, with DDR SDRAM to cache the image data, which can realize flexible working mode with the windowing mode of the sensor. Firstly, the principle of system parameter selection are given, and the work characteristics of GSENSE6060 are described, then the triggering and termination of event mode are realized by algorithm. The system has high flexibility and reliability, which is suitable for long-time Full-Disk observation and solar eruptions monitoring. During the flare eruption, a high frame rate acquisition with a resolution of 1024 × 1024 can be realized every 4s for the eruption region, which can be used to acquisition the maximum effective data. Experiments show that the system readout noise is better than 6 e-, in Rolling HDR mode can synthesize 16-bit, resolution of 4608 × 4608 and dynamic range larger than 90dB images, to meet the system design index.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.