We demonstrate a simple and efficient technique that allows for a complete characterization of silica-based tapered optical fibers with sub-wavelength diameters ranging from 0.5 μm to 1.2 μm. The technique is based on Brillouin reflectometry using a single-ended heterodyne detection. It has a high precision sensitivity down to 1% owing to the strong dependence of the Brillouin spectrum on the taper diameter. We further investigate the tensile strain dependence of the Brillouin spectrum for an optical microfiber up to 5% of elongation. The results show strong dependences of several Brillouin resonances with different strain coefficients ranging from 290 MHz/% to 410 MHz/% with a specific nonlinear deviation at high strain. Those results therefore show that optical micro and nanofibers could find potential application for sensitive strain optical sensing.
This paper, “State-of-the-art of photorefractive holographic interferometry and potentialities for space applications," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Wavelength Raman converters have been developed for years to provide an elegant solution to easily shift the wavelength of existing lasers. In the pulse regime, due to relatively low Raman gains, these converters are usually limited to high-energy pulses, typically a few J or a few mJ in the nanosecond or picosecond regime. In order to build efficient Raman converters with lower energy pulses, we have developed a new class of fiber wavelength shifters based on Stimulated Raman Scattering in the liquid filling the hollow core of photonic bandgap fibers or Kagome fibers. The liquid choice, the design of the photonic crystal microstructure, the fiber length and its diameter give us enough degrees of freedom to realize efficient and versatile shifters, each being optimized for a specific wavelength shift. Connecting such a fiber device to a fixed wavelength laser allows delivering a new wavelength. With the same laser, another wavelength can be obtained by connecting another shifter. Using microlasers delivering 532 nm sub-nanosecond pulses of about 1 μJ, we already built a full series of shifters to reach any wavelength among: 556 nm; 561 nm; 582 nm; 595 nm; 612 nm; 630 nm; 650 nm; 667 nm; 772 nm. Hereafter, we detail how we design and optimize these new devices.
We demonstrate experimentally and numerically the generation of a new class of surface acoustic waves in a
subwavelength-diameter silica microwire and term this new effect as surface acoustic wave Brillouin scattering
(SAWBS).
Lippmann photography is a more than one century old interferometric process invented for recording colored images
in thick black and white photographic emulsions. After a comparison between this photographic process and Denisyuk
holography, we feature some hints to apply this technique to high density data storage by wavelength multiplexing in a
page-oriented approach in thick media. For the first time we experimentally investigate this approach. We anticipated
that this storage architecture should allow capacities as large as for conventional holography.
In Lippmann photography, the interference of the image with its reflection onto a mirror in contact with the photographic
emulsion allows, for each pixel of the image, the recording of Bragg gratings. Removing the mirror, processing the plate
and reading out these Bragg gratings with a white light source diffracts the very colours used for recording and thus
reproduces the images in colours. Using Lippmann photography as a data storage technique was proposed in the 1960th:
for a given pixel, and to each recording wavelength is associated one bit of data, several bits being recorded at the same
pixel. In this paper, we revisit this data storage technique and we propose and demonstrate an homodyne detection to
improve the efficiency of Lippmann data storages. The proposed homodyne geometry also presents the advantage to
simplify the architecture: the Lippmann mirror required for recording is kept in place for data retrieving. Such an
homodyne readout could also be applied to enhance the detected signals in other holographic approaches.
The multimode and depolarized output beam of a highly multimode diode-pumped Yb-doped fiber amplifier is converted to a diffraction limited, linearly polarized beam by a self-referencing two wave mixing process in an infrared sensitive photorefractive crystal (Rh:BaTiO3). Up to 11.6W singlemode output is achieved with a 78% multimode to singlemode photorefractive conversion efficiency.
Different types of polymers are proposed for holographic data storage : photopolymers like PMMA where bonds form or break in the polymer network under illumination, photochromic polymers containing for example azobenzene groups (proposed for high resolution nanolithography), and photopolymerizable systems using inhomogeneous polymerization of one or more monomers for holographic data storage. The material proposed in this work enters in the last family, giving rise to thick phase holograms. The coupling betwween polymerization and diffusion processes is extensively studied in order to characterize the photoinduced microstructuration. Diffusion processes are generated by the concentration gradients due to a disappearance of dye and monomer molecules at different rates in the reactive medium. Creation of gratings with spatial frequencies ranging from 10 to 4000 lines/mm was studied. The formulations are suited to be photopolymerized by illumination around 500 nm, allowing the polymerization of thick samples (thickness of a few hundred microns) with a good optical quality. In order to obtain a reversible process and to improve the storage capicity of the matrix, the medium is doped by a photochromic molecule while the polymerization is used for the photostructuration of the host matrix. The process needs at first the creation of tubular regions corresponding to the highest refractive index of the matrix. By entering in such a fiber, light is guided in the thickness of the material. In each microfiber, bits are recorded in the second stage one after the other one. Several bits can be stored in a same fiber by wavelength multiplexing.
Many industrial applications require high power semiconductor laser sources emitting beams of good quality. However, the emission of a free running high-power broad-area semiconductor laser contains many lateral modes that explains its poor beam quality and low brightness. One of the techniques to improve beam quality consists in placing a broad-area laser diode, used as a pure optical amplifier, in an extended cavity. Such a technique has proved its efficiency to produce a nearly diffraction limited beam at least for low pumping current level. For higher pumping currents, its spatial quality is deteriorated by the oscillation of higher order extended cavity modes. Using numerical simulations, we demonstrate that the insertion of a photorefractive crystal inside a broad-area laser diode extended cavity should extend the laser operating single mode range.
Photorefractive crystals offer many advantages over other classical holographic recording media. They allow fast in-situ processable holographic recording as well as indefinite reusability. Moreover high signal-to-noise ratio can be reached as well as high resolutions. We present the results obtained by pulsed holographic interferometry obtained with photorefractive crystals. First experiments showing the potentiality of photorefractive crystals for such applications will be reviewed. Some limitations were pointed out and led us to consider new developments under the frame of an European-funded project. The PHIFE European project (Pulsed Holographic Interferometer for the analysis of Fast Events) aims at developing a full field measurement system at a high repetition rate, based on a double-pulse YAG Q-switch laser. This device will be used for the analysis of vibrations and for aerodynamic studies. Different crystals are considered which are adapted to the fundamental line of the YAG (AsGa or CdTe crystals) or after frequency doubling at 532 nm (Bi12SiO20). Different crystal configurations and recording geometries are compared. Also different innovative phase quantification techniques are studied and take into account some special properties of the PRCs. We present the results obtained so far in the first development phases of the project.
The multimode and depolarized output beam of a highly multimode diode-pumped Yb-doped fiber amplifier is converted to a diffraction limited, linearly polarized beam by a self-referencing two wave mixing process in an infrared sensitive photorefractive crystal (Rh:BaTiO3). Up to 11.6W singlemode output is achieved with a 78% multimode to singlemode photorefractive conversion efficiency.
We will present the basic properties of photorefractive crystals and show how they can be used efficientl in holograpic interferometry experiments. We then will present some holographic systems and their numerous applications. With continuous illumination, we will show classical non destructive testing (defect detection), displacement metrology, vibration mode shape visualization, as well as a study for the use of photorefractive crystals in microgravity monitoring of fluid (FSL) experiment aboard the International Space Station). With pulsed illumination we will present the possibilities of the photorefractive crystals in vibration measurement (and will introduce the ongoing EC-funded PHIFE research project). The purpose of the paper is to unmystify photorefractive crystals and to show that they could be a good alternative to traditional speckle-based techniques for highly demanding applications. For that we will highlight the highest resolution achieved as well as the high temporal dynamics of the holographic recording.
Photopolymerizable materials are capable of recording high-efficiency volume holograms by changing the refractivity of the layer, for fringe spacing between 0.2 and 10 ?m. As the photosensitive emulsion is embedded between two glass plates, it is possible to open the sandwich after the recording and to analyze the free polymer surface using pulsed force mode of an atomic force microscope. The modulation of properties between the bright and dark fringes, photoinduced by an interference pattern are analyzed in terms of : - relief amplitude (the surface corrugation appearing after opening is due to the relaxation in surface of the constraints stored during the grating formation) ; - local variations of the mechanical polymer properties (they are related to the coupling of the spatially controlled photopolymerization with mass diffusion processes, giving rise to the microstructuration, e.g. regions with various segment densities). Taking into account all these data, improvement of the material is possible in view of applications in data storage or creation of optical diffractive elements. In particular, in the case of multiplexed gratings, it provides a means for visualizing the Young’s modulus pattern associated with each individual record and, therefore, optimizing the recording procedure.
Dramatic reduction of the number of oscillating modes in CW and pulsed lasers has been observed using a photorefractive crystal placed inside the cavity. Reflective Bragg gratings recorded by the standing waves inside the crystal act with the output coupler as a self-adapted Fabry-Perot filter. Its spectral characteristics enhance mode competitions which can lead to a single mode operation.
In this paper we describe the realization and the operation of a high capacity optoelectronic neural network implementing a classification of vectors through a Kohonen topological map. The setup uses volume holographic interconnects inside a photorefractive crystal to implement the neurons. We show that the system work and is able to classify several tens of vectors.
It is now well known that rhodium doped barium titanate (BaTiO3:Rh) exhibits a significant photorefractive response at near infrared wavelengths .We studied and characterized this crystal at 1 .06 jtm by two-wave mixing experiments. In a 45°-cut crystal with a low absorption (0.1 cm1), we measured a photorefractive gain F of 23 cm1 with cw illumination and 16.6 cm1 with nanosecond illumination. Using spectroscopic determinations of the photorefractive sites 2(Rh3+, Rh4+, RhS+), we demonstrated that the photorefractive properties of BaTiO3:Rh are well described by a three charge state model '. Internal parameters of the material were derived using these experimental characterizations which allowed to accurately predict its performances at 1 .06 tm. Comparative characterizations of several BaTiO3 :Rh samples proved that this material is now well reproducible. Reproducibility, high photorefractive gain, low absorption and accurate theoretical description make BaTiO3:Rh a good candidate for realization and optimization of non linear functions like optical phase conjugation. The application we are interested in, is the dynamic wavefront correction of nanosecond Nd:YAG master-oscillator power amplifier (MOPA) laser sources. We implemented a ring self-pumped phase conjugate mirror using a BaTiO3:Rh crystal . This geometry brings several advantages. The threshold in terms of "gain X interaction length" product, is low (F1=2) 6 This phase conjugate mirror does not require a source of long coherence length 7and the gratings involved in the four wave mixing process can be well controled. Moreover the phase conjugate beam can be efficiently selected among the backscattered light by inserting optical elements in the ring 8,9• Such a self-pumped mirror is self-starting and the four-wave mixing process is initiated by the beam-fanning. To avoid spurious internal oscillations in total reflection on the crystal faces that initially developed in several of our experiments and prevented phase conjugation we optimized the geometry of the crystal. Roof-cut, 45° orientation of the c axis and antireflection coatings of the crystal suppressed these internal oscillations and efficient phase conjugation was demonstrated.
Photorefractive rhodium doped barium titanate (BaTiO3:Rh) is now well known for its significant response at near infrared wavelengths .We studied and characterized this crystal at 1.06 j.tm. By twowave mixing experiments in a 45°-cut crystal, we measured a maximum photorefractive gain F of 23 cm1 with cw illumination and 16.6 cm1 with nanosecond illumination, together with a low absorption (0. 1 cm1). Using spectroscopic determinations of the photorefractive sites 2 (Rh3, Rh4, Rh5), we showed that the photorefractive properties of BaTiO3 Rh could be well described by a three charge state model .This enabled to determine the internal parameters of the material using experimental characterizations and to accurately predict its performances at 1 .06 tm. Comparative characterizations of several BaTiO3:Rh samples proved that this material is now well reproducible, which is of prime importance for applications. Reproducibility, high photorefractive gain, low absorption and accurate theoretical description make BaTiO3:Rh a good candidate for realization and optimization of non linear functions like optical phase conjugation. The application we are interested in, is the dynamic wavefront correction of nanosecond Nd:YAG master-oscillator power-amplifier (MOPA) laser sources.
KEYWORDS: Spatial light modulators, Holograms, Image processing, Signal processing, Signal to noise ratio, Holography, Modulation, Multiplexing, Optical storage, Data storage
SLMs' finite contrast causes noise which bounds the number of storable holograms. We present a method to reduce this noise and increase the storage capacity.
After a rapid introduction that indicates the main reasons for the renewal of interest for photorefractive holographic memories, we will first present and compare both the coding techniques and recording procedures used for storage of superimposed images. Potentialities and limitations that are relevant to existing photorefractive crystals will be then discussed. Refreshing procedures that allow to operate the dynamic memory without loss of information will be also described. We will then devote the major part of the article to discussing applications we envision for photorefractive holographic memories.
We proposed to periodically refresh the images stored in dynamic holographic memories by using an opto-electronic feedback loop. Readout of the images without loss of information is experimentally demonstrated in a photorefractive LiNbO3 sample.
After a rapid introduction that presents the main reasons for the renewal of interest for photorefractive holographic memories, we first discuss their potentialities and limitations. We then continue by a presentation and analysis of novel techniques that permit considerable facilitation of the memory operation and improve its capabilities. In conclusion, we indicate envisioned applications for photorefractive holographic memories.
We initially study a peak of the photorefractive two-wave mixing gain which appears for a particular frequency of a sinusoidal applied electric field. The optimization of the process by applying periodic pulsed electric fields leads to a considerable rise of the two-wave mixing gain. The authors demonstrate that the gain reached with this technique is higher than the maximum gain obtained with usual enhancement techniques. Effectively, with a Bi12GeO20:Fe sample, a gain of 10 cm-1 is obtained, compared to 2 cm-1 in the same crystal with the other techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.