A novel fiber-optic interferometer fringe projector with the sinusoidal phase-modulating method is presented. The system utilizes the integrating bucket method to detect the desired phase or the displacement and a CMOS image sensor to detect four frames obtained by integration of the time-varying intensity in an interference image during the four quarters of the modulation period. Since this technique with the method modulating the injection current of the piezoelectric transducer (PZT), measurement accuracy is not affected by an intensity modulation that usually appears in the current modulation. The system also utilizes the Fresnel reflection signal to adjust the phase-modulation coefficient z to eliminate the disturbance of initial phase ψ0 . The experimental results for surface profiles of a convex hull show that the sinusoidal phase modulating interferometer proposed here confirms its applicability to practical application.
A fiber-optic sinusoidal phase-modulating (SPM) interferometer for fringe projection is presented. The system is based on the SPM technique and makes use of the Mach–Zehnder interferometer structure and Young’s double pinhole interference principle to achieve interference fringe projection. A Michelson interferometer, which contains the detection of Fresnel reflection on its fiber end face and interference at one input port of a 3 dB coupler, is utilized to achieve feedback precise control of the fringe phase, which is sensitive to phase drifting produced by the nature of the fiber. The phase diversity for the closed-loop SPM system can be real-time measured with a precision of 3 mrad. External disturbances mainly caused by temperature fluctuations can be reduced to 57 mrad for the fringe map. The experimental results have shown the usefulness of the system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.