Infrared imaging is a crucial technique in a multitude of applications, including night vision, autonomous vehicle navigation, optical tomography, and food quality control. Conventional infrared imaging technologies, however, require the use of materials such as narrow bandgap semiconductors, which are sensitive to thermal noise and often require cryogenic cooling. We demonstrate a compact all-optical alternative to perform infrared imaging in a metasurface composed of GaAs semiconductor nanoantennas, using a nonlinear wave-mixing process. We experimentally show the upconversion of short-wave infrared wavelengths via the coherent parametric process of sum-frequency generation. In this process, an infrared image of a target is mixed inside the metasurface with a strong pump beam, translating the image from the infrared to the visible in a nanoscale ultrathin imaging device. Our results open up new opportunities for the development of compact infrared imaging devices with applications in infrared vision and life sciences.
Dielectric metasurfaces have recently shown to be an excellent candidate for efficient frequency mixing at the nanoscale due to the excitation of Mie resonances. Among various dielectric materials, GaAs-based nanostructures have been reported to have high-efficiency of second-order nonlinear processes due to their high quadratic nonlinear susceptibility. Efficient frequency up-conversion can thereby be realised in GaAs-based metasurfaces through the process of sum-frequency generation (SFG), thereby opening new opportunities for nonlinear imaging and infrared vision not possible before. Here we demonstrate for the first time, infrared imaging based on nonlinear mixing of an infrared image with a pump beam in a GaAs resonant metasurface. The nonlinear mixing process generates visible images (Fig. 1a), which can be time resolved with femtosecond resolution and can be observed on a conventional CMOS sensor. Our results open new opportunities for the development of compact night-vision devices operating at room temperature and have multiple applications in defense and life sciences.
Switching the scattering direction of high-index dielectric nanoantennas between forward and backward, via Mie resonances in the linear regime, has been widely studied, recently. However, switching the harmonic emission of nanoantennas without applying any physical change to the antennas, such as geometry, or environment, is a chal- lenging task that has not been demonstrated yet. Here, we investigate multipolar second-harmonic switch from GaAs nanoantennas. Based on the peculiar nonlinearities of zinc-blende semiconductors, we demonstrate both theoretically and experimentally unidirectional nonlinear emission routing and switching via pump polarization control. Our results offer exciting opportunities for nonlinear nanophotonics technologies, such as nanoscale light routing elements, nonlinear light sources, nonlinear imaging, multifunctional flat optical elements.
The group of zincblende III-V compound semiconductors, especially (100)-grown AlGaAs and GaAs, have recently been presented as promising materials for second harmonic generation (SHG) at the nanoscale. However, major obstacles to push the technology towards practical applications are the limited control over directionality of the SH emission and especially zero forward/backward radiation. In this work we provide both theoretically and experimentally a solution to these problems by presenting the first SHG nanoantennas made from (111)-GaAs embedded in a low index material. These nanoantennas show superior forward directionality compared to their (100)-counterparts. Most importantly, it is possible to manipulate the SHG radiation pattern of the nanoantennas by changing the pump polarization without affecting the linear properties and the total nonlinear conversion efficiency.
Optical nanoantennas possess great potential for controlling the spatial distribution of light in the linear regime as well as for frequency conversion of the incoming light in the nonlinear regime. However, the usually used plasmonic nanostructures are highly restricted by Ohmic losses and heat resistance. Dielectric nanoparticles like silicon and germanium can overcome these constrains [1,2], however second harmonic signal cannot be generated in these materials due to their centrosymmetric nature. GaAs-based III-V semiconductors, with non-centrosymmetric crystallinity, can produce second harmonic generation (SHG) [3]. Unfortunately, generating and studying SHG by AlGaAs nanocrystals in both backward and forward directions is very challenging due to difficulties to fabricate III-V semiconductors on low-refractive index substrate, like glass. Here, for the first time to our knowledge, we designed and fabricated AlGaAs nanoantennas on a glass substrate. This novel design allows the excitation, control and detection of backwards and forwards SHG nonlinear signals. Different complex spatial distribution in the SHG signal, including radial and azimuthal polarization originated from the excitation of electric and magnetic multipoles were observed. We have demonstrated an unprecedented SHG conversion efficiency of 10-4; a breakthrough that can open new opportunities for enhancing the performance of light emission and sensing [4].
References
[1] A. S. Shorokhov et al. Nano Letters 16, 4857 (2016).
[2] G. Grinblat et al. Nano Letters 16, 4635 (2016).
[3] S. Liu et al. Nano Letters 16, 7191 (2016).
[4] R. Camacho et al. Nano Lett. 16, 7191 (2016).
Metallic nanoantenna possess versatile scattering properties enabling to engineer the emission directionality at the nanoscale. However, due to their Ohmic losses and low heat resistance they cannot be practically applied in nonlinear optical processes for optical frequency conversion. Dielectric nanoparticles, e.g. silicon and germanium, are good candidates to overcome these limitations [1, 2]. Nevertheless, the centrosymmetric nature of these materials have voided the second-harmonic generation (SHG). Alternatively, the use of GaAs-based III-V semiconductors, with non-centrosymmetric structures, can overcome this difficulty [3,4]. However, fabrication of III-V semiconductor nanoantennas on low refractive index substrates remains very challenging, blocking the possibility to explore the SHG directionality in both forward and backward direction. Here, for the first time to our knowledge, we design and fabricate high-quality AlGaAs nanostructures on a glass substrate. Through this novel platform, we manage to excite, control and detect backward and forward nonlinear signals by SHG in AlGaAs nanodisks [5,6]. In particular, we observe that for certain size of nanoantenna, the SHG emission has a complex spatial distribution polarization state corresponding to radial polarization in the forward direction and a polarization state of a more general nature in the backward direction. Furthermore, we demonstrate an unprecedented SHG conversion efficiency of 10-4. Our breakthrough can open new avenues for enhancing the performance of photodetection, light emission and sensing.v
Nanostencil Lithography (NStL), while comparatively still in infant stages, is proving to be a viable option for low-cost and high resolution fabrication. An ideal stencil for NStL consists of a low-stressed silicon nitride membrane supported on a silicon chip with required patterned features in nanometer range that become apertures. The stencil is used as a shadow mask and placed in close contact on top of a substrate/wafer. This pair is then ready for either depositing metal through the apertures in the stencil using variety of deposition techniques or etching the substrate using dry etching techniques with stencil acting as a mask. The nanostencils were fabricated using focused ion beam writing on a silicon nitride window/membrane. We made well-ordered array of 700 nm diameter and 15 nm thick gold and chromium nanodots on III-V substrate. Metal layers were deposited using e-beam evaporator. The formed gold nanodots can be used for vapor-liquid-solid nanowire growth (bottom-up), while the chromium nanodots were used as a mask for reactive ion etching of GaAs structures, for instance, fabricating nanowires (top-down approach). We used the nanostencil directly as a mask for dry etching of InP substrate for making nanoholes array. Making these types of nanoholes in silicon oxide layer deposited on the top of III-V substrate opens the possibility to use in selective area growth of nanowires. Additionally, we fabricated optical nanoantenna structures to demonstrate other possible usage of NStL.
We demonstrate the use of liquid crystal infiltration of fishnet structures for the realization of highly tunable and
nonlinear optical metamaterials. We show that fishnet metamaterials infiltrated with nematic liquid crystals can exhibit
strong nonlinear response at moderate laser powers. We also show that this nonlinear response arises due to the
molecular orientation of the liquid crystal molecules and can be therefore be fine-tuned with an electric field, opening
new opportunities for electrically tunable nonlinear metamaterials.
Results are presented on the use of InGaAsP photonic crystal nanobeam slot waveguides for refractive index
sensing. These sensors are read remote-optically through photoluminescence, which is generated by built-in InGaAs
quantum dots. The nanobeams are designed to maximize the electromagnetic field intensity in the slot region, which
resulted in record-high sensitivities in the order of 700 nm/RIU (refractive index unit). A cavity, created by locally
deflecting the two beams towards each other through overetching, is shown to improve the sensitivity by about 20%.
Liquid crystal (LC, Merk 5 CB) is infiltrated into active, InAs quantum dots embedded, InGaAsP membrane type
nanocavities to investigate the possible effect of the LC orientation on active cavity tuning. The tuning is demonstrated
thermally and thermo-optically. The thermal tuning showed that the cavity modes can be tuned in opposite directions and
exhibits a sudden change at the clearing temperature. The mechanism relies on the existence of both ordinary and
extraordinary refractive indices of the liquid crystal due to its molecular alignment inside the voids. It shows that the
electric field distribution of cavity modes can have a substantial component parallel to the LC director. The average
electric field orientation with respect to the LC orientation can be mode dependent, so that different modes can be
dominated by either branch of the LCs refractive index. Thermo-optic tuning of the modes is obtained when the power of
the excitation laser is increased from 40 μW to 460 μW. A large and a reversible blueshift of more than 10 nm of the
cavity modes is observed which is attributed to temperature induced liquid transport. InGaAsP type of nanocavities,
without InAs quantum dots were infiltrated with PbSe colloidal quantum dots to obtain a comparison of internal light
sources either in the semiconductor or in the holes.
Hexagonal symmetry InGaAsP membrane type cavities with embedded InAs quantum dots as active emitters were investigated by room temperature photoluminescence experiments at wavelengths near 1.50 µm. Cavities consisting of simple defects of just removing one or seven air holes were studied as well as modified cavities with additional holes decreased in size and shifted in position. The latter include the H0 cavity, in which only two adjacent holes were modified, but none removed. Low-Q cavity modes were observed for the simple cavities while high-Q modes were observed after modification of the surrounding holes. The resonant frequencies were varied over a large range of lithographic parameters both by changing the lattice spacing or the size of the modified holes. More than 15 nm reversible dynamic optical tuning of the resonance modes was observed by changing the applied laser power up to 5 mW. For thermo-optic tuning, this corresponds to a heating of up to 200 °C.
Photonic crystal (PC) devices in the InP/InGaAsP/InP planar waveguide system exhibiting narrow bandwidth
features were investigated for use as ultrasmall and tunable building blocks for photonic integrated circuits at
the telecom wavelength of 1.55 μm. The H1 cavity, consisting of a single PC-hole left unetched, represents
the smallest possible cavity in a dielectric material. The tuning of this cavity by temperature was investigated
under the conditions as etched and after the holes were infiltrated with liquid crystal (LC), thus separating the
contributions of host semiconductor and LC-infill. The shift and tuning by temperature of the MiniStopBand
(MSB) in a W3 waveguide, consisting of three rows of holes left unetched, was observed after infiltrating the PC
with LC. The samples finally underwent a third processing step of local wet underetching the PC to leave an
InGaAsP membrane structure, which was optically assessed through the ridge waveguides that remained after
the under etch and by SNOM-probing.
In view of an electrically pumped photonic crystal-based semiconductor optical amplifier (SOA), we investigate optical mode propagation in 2D PhC waveguides in the presence of metal contacts for carrier injection. Our photonic crystal (PhC) devices are manufactured in the InP/InGaAsP material system. For the loss measurements, we have fabricated contact strips as narrow as 300nm with a sub-50nm placing accuracy on top of W3 waveguides. We study the influence of their position and width on optical power transmission through passive waveguides with respect to viability for future active devices. Our experimental results are complemented by numerical studies (FDTD, plane-wave expansion method).
The filling is reported of the air holes of an InP-based two-dimensional photonic crystal with solid polymer and with liquid crystal 5CB. The polymer filling is obtained by thermal polymerization of an infiltrated liquid monomer, trimethylolpropane triacrylate. The filling procedure for both the monomer and liquid crystal relies on the capillary action of the liquid inside the ~ 200 nm diameter and < 2.5 μm deep air holes. The solid polymer infiltration result was directly inspected by cross-sectional scanning electron microscopy. It was observed that the holes are fully filled to the bottom. The photonic crystals were optically characterized by transmission measurements around the 1.5 μm wavelength band both before and after infiltration. The observed high-frequency band edge shifts are consistent with close to 100% filling, for both the polymer and the liquid crystal. No differences were observed for filling under vacuum or ambient, indicating that the air diffuses efficiently through the liquid infiltrates, in agreement with estimates based on the capillary pressure rise.
Polymer filling of the air holes of indiumphosphide based two-dimensional photonic crystals is reported. The filling is
performed by infiltration with a liquid monomer and solidification of the infill in situ by thermal polymerization.
Complete hole filling is obtained with infiltration under ambient pressure. This conclusion is based both on cross-sectional
scanning electron microscope inspection of the filled samples as well as on optical transmission
measurements.
Mischa S. Andriesse, Carl-Fredrik Carlström, Emile van der Drift, Erik-Jan Geluk, Rob van der Heijden, A. Karouta, Peter Nouwens, Y. Siang Oei, Tjibbe de Vries, Huub Salemink
Chlorine-based inductively coupled plasma etching processes are investigated for the purpose of etching two-dimensional photonic crystals in InP-based materials. Etch rates up to 3.7 mm/min and selectivity’s to the SiN mask up to 19 are reported. For the removal of indiumchloride etch products both the application of elevated temperatures and high ion energy’s are investigated. The reactor pressure is an important parameter, as it determines the supply of reactive chlorine. It is shown, that N2 passivates feature sidewalls during etching, improving the anisotropy. Ions that impact onto the sidewalls, either directly or after scattering with the SiN-mask or hole interior, cause sidewall etching. Highly directional ion bombardment and vertical sidewalls in the SiN-mask are therefore crucial for successful etching of fine high aspect ratio structures.
Ridge waveguides with smooth and vertical sidewalls are essential in photonic circuits. We have investigated waveguide realization with reactive ion etching of InP and InP-based structures using a SiNx in a Cl2/H2/CH4 chemistry in an ICP plasma. Depending on ICP power and RF power, etching rates can be obtained from 200 nm/min up to > 2μm/min. A maximum etching selectivity of InP vs SiNx of 12 was obtained at 2000 W of ICP power. Deep etched waveguides, fabricated in an InP/InGaAsP double heterostructure, show typical losses of 2 dB/cm. This low value shows the potential of ICP technique in the fabrication of photonic circuits.
We have investigated the potential of asymmetric current injection for polarization switching in GaAs-based intra-cavity contacted vertical cavity surface emitting lasers using two sets of p- and n-contacts per device. We simulated the current paths in both symmetric and asymmetric contacted devices. A large lateral current component is present in the asymmetric case; this induces a certain anisotropy in comparison to the symmetric case, possibly able to stabilize the polarization in one direction. Intra-cavity devices are processed on a standard air-post VCSEL wafer. When using the contacts set along the [1-10] direction, the polarization was set along [110] while using the contacts along [110] the polarization switches from the direction along [110] to a direction making an angle of 25° to 90° towards [110]. This peculiar result can be explained by the fact that the used VCSEL structure is not designed for intra-cavity contacting.
The article shows the most important experimental results describing the properties of nitride layers on GaN single crystals. The layers were grown using metal-organic chemical vapor deposition (MOCVD). The growth was monitored by in-situ laser reflectometry. The layers contain very small dislocation density of about 10 to 103 cm$min2 (the same as in GaN substrates). Morphology and crystallographic quality was examined using atomic force microscopy and X-ray diffraction. The layers have excellent photo luminescent properties which have a direct impact on the optoelectronic device properties.
Top-emitting intra-cavity VCSELs have been fabricated by reactive-ion etching of a double mesa and applying p and n contact metallizations at the bottom of both mesas, respectively, where highly doped layers are inserted into the cavity on either side of the active region. The VCSELs are designed to emit around 980 nm, and use two strained InGaAs quantum wells and AlAs/GaAs DBR mirrors. Efficient lateral current constriction is realized by selective oxidation of two AlAs layers in the second mesa. A sealing method has been developed to prevent simultaneous oxidation of the top-DBR. A novel asymmetric contacting scheme is introduced in order to avoid current crowding at the inner edges of the oxidized AlAs layers and to stabilize the polarization. Devices with various mesa shapes and either symmetric or asymmetric contacts have been fabricated on the same wafer. Experimental analysis of these VCSELs demonstrates polarization control by asymmetric current injection, where the polarization perpendicular to the current path is favored due to anisotropy of both gain and optical losses. The strength of this effect relative to others (anisotropic loss in rectangular mesas, crystal anisotropy) and its use in electrically controlled polarization switching is explored.
Iulian Petrescu-Prahova, Manuela Buda, Gheorghe Iordache, Fouad Karouta, Barry Smalbrugge, Theo van de Roer, L. Kaufmann, Joachim Wolter, Willem van der Vleuten
Low confinement laser diode structure permits lower modal gain, longer devices and wider stripes. The optimum value of the confinement factor is correlated with the modal attenuation coefficient. For an 1 cm-1 modal attenuation coefficient, the optimum operation is obtained in 12 micrometers stripe and 0.007 confinement factor. In such structures, fundamental lateral mode is preserved at power higher than 1 W.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.