This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The results of measurements on a 100 nm height standard with both selected light sources have been compared. Under consideration of the coherence length of both light sources of 1.58 μm for the SC source and 1.81 m for the LDP source differences could be recorded. Especially at sharp edges, the LDP light source could record height changes with slopes twice as steep as the SC source. Furthermore, it became obvious, that measurements with the SC source tend to show edge effects like batwings due to diffraction. Additional effects on the measured roughness and the flatness of the profile were investigated and discussed.
In experiments on a height standard, it could be shown that the setup is capable of recording multiple height steps of 101 nm over a range of 500 m with an accuracy of about 11.5 nm. Further experiments on conductive paths of a micro-electro-mechanical systems (MEMS) pressure sensor demonstrated that the approach is also suitable to precisely characterize nanometer-sized structures on production-relevant components. The main advantage of the proposed measurement approach is the possibility to collect precise height information over a line on a surface without the need for scanning. This feature makes it interesting for a production-accompanying metrology.
Intraoperative imaging of cortical perfusion by time-resolved thermography using cold bolus approach
View contact details
No SPIE Account? Create one