We report the use of Time-Correlated Single Photon Counting (TCSPC) in a polarization-resolved Fluorescence Lifetime Imaging (FLIM) setup for the investigation of cell membrane structural and dynamic properties. This technique allows us to study the orientation and mobility of fluorescent membrane dyes, namely di-4-ANEPPDHQ and DiO, in model bilayers of different lipid compositions. Dipole alignment and extent of rotational motion can be linked to membrane order and fluidity. Comparison of the time-resolved anisotropy decays of the two fluorescent dyes suggests that rotational motion of membrane constituents is restricted in liquid-ordered phases, and appears to be limited to the region of aliphatic tails in liquid-disordered phases. In living cells, understanding the membrane structure provides crucial information on its functional properties, such as exo- and endocytosis, cell mobility and signal transduction.
We describe the characterisation of a hyperspectral fluorescence lifetime imaging microscope that exploits high-speed
time-gated imaging technology and a tunable continuum source for 6-D fluorescence imaging. This line-scanning
confocal microscope can record the full spectral-temporal (i.e. excitation-emission-lifetime) fluorescence matrix at each
pixel in a three dimensional (x-y-z) sample. This instrument has been applied to biological samples including model
membranes and live cells labelled with the phase-sensitive membrane dye di-4-ANEPPDHQ, for which significant
variation of lifetime with emission wavelength is observed.
We present the design, characterization and application of a novel, rapid, optically sectioned hyperspectral fluorescence
lifetime imaging (FLIM) microscope. The system is based on a line scanning confocal configuration and uses a highspeed
time-gated detector to extract lifetime information from many pixels in parallel. This allows the full spectraltemporal
profiles of a fluorescence decay to be obtained from every pixel in an image. Line illumination and slit
detection also gives the microscope a confocal optical sectioning ability. The system is applied to test samples and
unstained biological tissue. In future, this microscope will be combined with recently-developed continuously
electronically tunable, pulsed light sources based on tapered, micro-structured optical fibers. This will allow
hyperspectral FLIM to be combined with the advantages of excitation spectroscopy to gain further insight into complex
biological specimens including tissue and live cell imaging.
The application of autofluorescence in non-invasive medical diagnostics could have great potential. Two major
drawbacks inherent to this approach are low signal levels compared to those from exogenous fluorescent probes
and complexity caused by the multiplicity of fluorescent biomolecules in tissue. Here we present a new optical
system that is based on single channel detection via an optical fiber and can measure the fluorescence emission
spectrum and fluorescence lifetime simultaneously for excitation wavelengths of 355 and 435nm. Single channel
measurements integrate the signal normally available in an imaging setup and therefore have a better signal-tonoise
ratio. Resolving both the fluorescence emission spectrum and fluorescence lifetime provides the opportunity
to discriminate multiple fluorophores. This instrument is intended for NAD(P)H and flavin measurements for
the dynamic monitoring of cellular metabolism and optical measurements of cancerous tissue. Initial results from
a study of live cells and a clinical study of human skin lesions are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.