In this contribution new results in the field of video processing regarding the problem of obstacle detection will be presented.
Video sequences obtained from a camera mounted in a driving car are used as the input to a CNN and different templates are applied to extract multiple features from video sequences. Thereby, CNN with nonlinear weight functions have been considered allowing a reliable feature extraction. A detailed discussion of the algorithms and obtained results will be given in this paper.
Cellular Neural Network-Universal Machines (CNN-UM) are analog devices, which are excellently suited for image processing. A big challenge thereby is the determination of CNN templates for special image processing tasks. In many cases appropriate templates can only be found by a parameter optimization. The determination of templates for complex applications in the area of CNN is usually performed by using a CNN software simulator. Unfortunately, in many cases the determined templates cannot be used in hardware realizations of CNN caused by realization effects. In order to find robust templates, which are not only working on CNN simulators, but also on hardware implementations, we present in this contribution a new kind of on-chip-multi-template-training. Furthermore, as a possible application, we will also present a CNN-based solution of the problem of Pattern Matching, which is a processing step in many areas of image processing, like e.g. in Motion Estimation, Image- and Video-Compression.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.