Chilas develops off-the-shelf laser sources based on hybrid integration of Photonic Integrated Chips (PICs). Combining the high optical powers of semiconducting optical amplifiers (SOAs) with low-loss wavelength tunable mirror structures on Si3N4 PICs results in compact and robust tunable laser sources. These extended cavity diode lasers (ECDLs) exhibit unique characteristics like wide tuning ranges (>100 nm), ultra-narrow linewidths (<1 kHz) and high output powers. Here we present up to 162.5 mW of optical output power by combining two SOAs inside a single cavity, thereby scaling the output power without the need of additional optical amplification on the output port. The presented laser operates inside the telecom C-band, but the strategy can be tailored to other wavelengths like 850 nm, 780 nm and 690 nm, where Si3N4 plays a key role. This new generation of hybrid integrated ECDLs, exhibiting high optical output powers, wide wavelength tuning ranges and ultra narrow linewidths, opens up a wide range of applications.
Wavelength stabilization of external cavity lasers is a of key importance to exploit their sub-kHz intrinsic linewidth. In this work we demonstrate < 20 dB optical phase noise reduction at acoustic frequencies using a simple off-the-shelf electronic feedback loop. The novelty here is that we exploit an on-chip optical frequency discriminator (OFD) in Si3N4 (TriPleX), based on an aMZI with a path length difference of 1.4 m, having less than 10 dB loss. The used setup has a bandwidth of approximately 1 MHz, allowing for wavelength modulation depth in the order of tens of MHz.
We have developed a compact PIC external cavity laser consisting of a hybrid integrated InP gain section and SiN tunable mirror, with a superior combination of characteristics. The laser has shown a narrow linewidth < 5 kHz, broad tuning range of 140 nm over the S-, C- and L- band, from 1473 nm to 1612 nm, and high single mode output power of 60 mW. The laser frequency can be modulated at frequencies < 10 MHz having a wavelength modulation depth of < 20 MHz.
Hybrid integration of semiconductor optical amplifiers with frequency-selective feedback circuits, implemented using low-loss Si3N4 waveguides, enables robust chip-sized lasers with outstanding properties. Deploying ring resonators as a tunable feedback filter provides single-mode operation over a wide wavelength range. Moreover, these rings resonantly enhance the cavity length, which results in ultra-narrow intrinsic linewidth, as low as 40 Hz.
Here, we present an overview on state-of-the-art developments regarding these lasers. We compare linewidth and tuning results for different feedback circuit configurations. Finally, we report on the first demonstration of a hybrid-integrated semiconductor laser that operates in the visible wavelength range.
We demonstrate the first on-chip laser frequency comb based on hybrid integration with low-loss Si3N4 waveguide circuits. The laser comprises an InP diode amplifier of which a small fraction is reverse biased for passive locking, while a Si3N4 feedback waveguide extends the optical cavity to a roundtrip length of 15 cm. The generated comb densely covers a 25 nm broad spectrum, at a 3 dB level, with more than 1600 comb-lines at 2 GHz spacing. With such properties, hybrid integrated diode lasers show great promise for widespread use in applications such as integrated microwave photonics or metrology.
Visible diode lasers with wide wavelength tunability and narrow spectral linewidth are of high importance in bio-photonics and metrology. Hybrid integrated diode lasers, using waveguide circuits for spectrally selective feedback, provide wide tunability and sub-100-Hz intrinsic linewidths in a robust chip format. So far, these lasers have only been realized at infrared wavelengths. Here we present the first operation of a hybrid integrated diode laser in the visible. The laser, formed by a diode amplifier which is hybrid integrated with a Si3N4 ring-resonator based feedback circuit, is tunable over 11 nm around 685 nm and delivers 5 mW output power.
Ultra-narrow linewidth tunable hybrid integrated lasers are built from a combination of indium phosphide (InP) and silicon nitride-based TriPleX™. By combining the active functionality of InP with the ultra-low loss properties of the TriPleX™ platform narrow linewidth lasers in the C-band are realized. The InP platform is used for light generation and the TriPleX™ platform is used to define a long cavity with a wavelength-selective tunable filter. The TriPleX™ platform has the ability to adapt mode profiles over the chip and is extremely suitable for mode matching to the other platforms for hybrid integration. The tunable filter is based on a Vernier of micro-ring resonators to allow for single-mode operation, tunable by thermo-optic or stress-induced tuning. This work will show the operational principle and benefits of the hybrid lasers and the state of the art developments in the realization of these lasers. High optical powers ( <100 mW) are combined with narrow linewidth (< 1 kHz) spectral responses with tunability over a large (>100 nm) wavelength range and a low relative intensity (< -160 dB/Hz).
Photonic Integrated Circuit (PIC) technology is becoming more and more mature and the three main platforms that offer Multi Project Wafer runs (Indium Phosphide (InP), Silicon on Insulator (SOI) and the silicon nitride based TriPleX platform) each have their own unique selling points. New disruptive PIC based modules are enabled by combinations of the different platforms complementing each other in performance. In particular the InP-TriPleX combination are two very complementary technologies. Combining them together yields for instance tunable ultra-narrow linewidth lasers extremely suitable for telecom and sensing applications. Also microwave photonics modules for Optical Beam Forming Networks and 5G communication can, and have been realized with this combination. Important part of this combination is the integration of the different platforms in modules via cost effective assembly techniques. This talk will present the combination of both technologies, the interconnection issues faced in the assembly process and latest measurement results on these hybrid integrated devices.
The spectral response of a distributed-feedback resonator with a thermal chirp is investigated. An Al2O3 channel waveguide with a surface Bragg grating inscribed into its SiO2 top cladding is studied. A linear temperature gradient along the resonator leads to a corresponding variation of the grating period. We characterize its spectral response with respect to wavelength and linewidth changes of the resonance peak. Simulated results show good agreement with the experimental data, indicating that the resonance wavelength is determined by the total accumulated phase shift. The calculated grating reflectivities at the resonance wavelength largely explain the observed changes of the resonance linewidth. This agreement demonstrates that the linewidth increase is caused by the increase of resonator outcoupling losses.
Distributed-feedback (DFB) laser resonators are widely recognized for their advantage of generating laser emission with extremely narrow linewidth. Our investigation concerns ytterbium-doped amorphous Al2O3 channel waveguides with a corrugated homogeneous Bragg grating inscribed into its SiO2 top cladding, in which a λ/4 phase-shift provides a resonance and allows for laser emission with a linewidth as narrow as a few kHz. Pump absorption imposes a thermal chirp of the grating period, which has implications for the spectral characteristics of the resonator. Thermal effects on the spectral response of a DFB passive resonator were investigated via simulations using Coupled Mode Theory by considering (i) a constant deviation of the grating period or (ii) a chirp with a linear profile. We report an increase of the resonance linewidth up to 15%. This result is due to two factors, namely changes of the grating reflectivity at the resonance frequency up to 2.4% and of the shift of resonance frequency up to 61 pm due to an accumulated phase shift imposed on the grating by the chirp profile. The linewidth decrease due to gain is on the order of 106, which is a much larger value. Nevertheless, according to the Schawlow-Townes equation the linewidth increase of the passive resonator due to a thermal chirp quadratically increases the laser linewidth.
We thoroughly investigate the Fabry-Pérot resonator, avoid approximations, and derive its generic Airy distribution, equaling the internal resonance enhancement, and all related Airy distributions, such as the commonly known transmission. We verify that the sum of the mode profiles of all longitudinal modes is the fundamental physical function characterizing the Fabry-Pérot resonator and generating the Airy distributions. We investigate the influence of frequency-dependent mirror reflectivities on the mode profiles and the resulting Airy distributions. The mode profiles then deviate from simple Lorentzian lines and exhibit peaks that are not located at resonant frequencies. Our simple, yet accurate analysis greatly facilitates the characterization of Fabry-Pérot resonators with strongly frequency-dependent mirror reflectivities.
In this work we demonstrate for the first time, to the best of our knowledge, quasi-continuous wave (qcw) laser operation of a diode-side-pumped Nd:YVO4 self-Raman laser operating at 1176 nm. The double beam mode controlling (DBMC) technique used in this work allows fundamental mode laser oscillation, resulting in a beam quality M2 of 2.42 and 2.18 in the horizontal and vertical directions, respectively. More than 3.5 W of peak output power at 1176 nm was achieved with TEM00 laser mode, corresponding to an optical conversion efficiency of 5.4%.With multimode operation, more than 8W of peak output power was achieved, corresponding to 11.7% optical conversion efficiency.
Here we report on the generation of ten deep blue to cyan laser emission lines using an intracavity frequency converted
Raman laser. The fundamental laser field of the intracavity Raman laser is based on the 3 level transition of a Nd:YLF
laser crystal, providing a short wavelength at 903 or 908 nm. When combined with generation of a Stokes shifted field
via intracavity stimulated Raman scattering (SRS) by a KGW Raman crystal, enables generation of laser emission in the
deep blue to cyan wavelength regime via additional nonlinear frequency conversion. Output at several blue-green
wavelengths was achieved, with quasi continuous wave (qcw) output powers of up to 1W. A detailed study of the
spectral behavior of the underlying Raman laser processes revealed strong spectral broadening of the fundamental laser
line at 908 nm to a width of up to 4 nm. The effect of the spectral broadening on the overall laser efficiency is analyzed.
Amorphous Al2O3 is a promising host material for active integrated optical applications such as tunable rare-earth-ion-doped
laser and amplifier devices. The fabrication of slab and channel waveguides has been investigated and optimized
by exploiting reactive co-sputtering and ICP reactive ion etching, respectively. The Al2O3 layers are grown reliably and
reproducibly on thermally oxidized Si-wafers at deposition rates of 2-4 nm/min. Optical loss of as-deposited planar
waveguides as low as 0.11±0.05 dB/cm at 1.5-μm wavelength has been demonstrated. The channel waveguide
fabrication is based on BCl3/HBr chemistry in combination with standard photoresist and lithography processes. Upon
process optimization channel waveguides with up to 600-nm etch depth, smooth side walls and optical losses as low as
0.21±0.05 dB/cm have been realized. Rare-earth-ion doping has been investigated by co-sputtering from a metallic Er
target during Al2O3 layer growth. At the relevant dopant levels (~1020 cm-3) lifetimes of the 4I13/2 level as high as 7 ms
have been measured. Gain measurements have been carried out over 6.4-cm propagation length in a 700-nm-thick Er-doped
Al2O3 waveguide. Net optical gain has been obtained over a 35-nm-wide wavelength range (1525-1560 nm) with
a maximum of 4.9 dB.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.