Under the Defense Advanced Research Projects Agency (DARPA) Zenith program, a novel concept has been developed for a self-assembling ferrofluidic ionic liquid mirror (FILM) telescope utilizing a Halbach array of permanent neodymium magnets. The primary mirror will be constructed from two immiscible liquids containing reflective and magnetic nanoparticles (NPs), which will spontaneously phase separate. To maximize reflectivity, minimize wavefront error (WFE), and anchor the reflective layer, the volume of the upper liquid has been minimized. The system is scalable and self-healing and can be deployed without applied acceleration or rotation. The Halbach array overcomes the force of gravity for a ground-based liquid mirror, providing a Kelvin body force potential parallel to the surface of the array. The liquids are held in place and shaped within the mirror by use of the magnetic array, hydrophilic materials, and the high surface tension and high viscosity of the liquid. By tuning the position of the magnet assembly and application of components that tune the effective magnetic field, the liquid surface is forced to adopt the desired optical shape and allows tilting off-axis and slewing with acceptable imaging quality WFE levels.
We report here on the progress of this work in multiple areas including modeling and simulation of the magnetic fluid system optimized for a 0.5 m diameter demonstration mirror and the supporting development of laboratory 0.25 m × 0.25 m flat prototypes of the fluid and magnetic systems. Analytical and finite element models of the ferrofluid and magnetic array have been developed and these results have informed a PDR-level design for a notional build and demonstration of a 0.5 m diameter F/2 spherical mirror with overall root mean squared (RMS) WFE of λ/6 at λ= 550 nm at Zenith which can be slewed to off-zenith pointing angles of up to 10°.
ITT has patented and continues to develop processes to fabricate low-cost borosilicate mirrors that can be used for both
ground and space-based optical telescopes. Borosilicate glass is a commodity and is the material of choice for today's
flat-panel televisions and monitors. Supply and demand has kept its cost low compared to mirror substrate materials
typically found in telescopes. The current technology development is on the path to having the ability to deliver imaging
quality optics of up to 1m (scalable to 2m) in diameter in three weeks. For those applications that can accommodate the
material properties of borosilicate glasses, this technology has the potential to revolutionize ground and space-based
astronomy. ITT Corporation has demonstrated finishing a planar, 0.6m borosilicate, optic to <100 nm-rms. This paper
will provide an historical overview of the development in this area with an emphasis on recent technology developments
to fabricate a 0.6m parabolic mirror under NASA Earth Science Technology Office (ESTO) grant #NNX09AD61G.
The 25 m aperture Cornell Caltech Atacama Telescope (CCAT) will be the first segmented telescope of its size and precision. A new technology was required to be able to economically manufacture the segments for the primary mirror. This technology had to be a low cost, low risk, volume manufacturing process in addition to meeting all of the optical and mechanical requirements. The segments had to be lightweight (10-15 kg/m2), have high specific stiffness and be thermally stable. The segments had to have sufficient robustness for practical transport and use and be compatible with high-reflectivity coatings. ITT has designed a replicated, lightweight glass mirror solution to these manufacturing problems. This technology can be used to fabricate segments for CCAT. It can be used to fabricate segments for visible wavelength segmented telescopes or any other application requiring lightweight optics in large quantities. This technology enables the fabrication of large, lightweight mirror segments in a few weeks to a couple of months, depending on the figure requirements. This paper discusses the design of these mirrors and presents demonstrated results to date, including a 0.5 m diameter, 8 kg/m2 borosilicate mirror blank and 0.2 m diameter replicated borosilicate mirrors.
Finish polishing of optics with magnetic media has evolved extensively over the past decade. Of the approaches conceived during this time, the most recently developed process is called magnetorheological finishing (MRF). In MRF, a magnetic field stiffens a fluid suspension in contact with a workpiece. The workpiece is mounted on the rotating spindle of a computer numerically controlled machine. Driven by an algorithm for machine control that contains information about the MRF process, the machine deterministically polishes out the workpiece by removing microns of subsurface damage, smoothing the surface to a microroughness of 10 angstroms rms, and correcting surface figure errors to less than 0.1 micrometers p-v. Spheres and aspheres can be processed with the same machine set-up using the appropriate machine program. This paper describes MRF and gives examples which illustrate the capabilities of a pre-prototype machine located at the Center for Optics Manufacturing.
Conference Committee Involvement (3)
Active and Passive Signatures VI
22 April 2015 | Baltimore, MD, United States
Active and Passive Signatures V
7 May 2014 | Baltimore, MD, United States
Optical Materials and Structures Technologies III
26 August 2007 | San Diego, California, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.