KEYWORDS: Data modeling, Image segmentation, Data acquisition, Scanners, 3D modeling, 3D image processing, Image processing, Magnetic resonance imaging, Positron emission tomography, Modeling
Musculoskeletal disorders (MSD) are becoming a big healthcare economical burden in developed countries with aging population. Classical methods like biopsy or EMG used in clinical practice for muscle assessment are invasive and not accurately sufficient for measurement of impairments of muscular performance. Non-invasive imaging techniques can nowadays provide effective alternatives for static and dynamic assessment of muscle function. In this paper we present work aimed toward the development of a generic data structure for handling n-dimensional metabolic and anatomical data acquired from hybrid PET/MR scanners. Special static and dynamic protocols were developed for assessment of physical and functional images of individual muscles of the lower limb. In an initial stage of the project a manual segmentation of selected muscles was performed on high-resolution 3D static images and subsequently interpolated to full dynamic set of contours from selected 2D dynamic images across different levels of the leg. This results in a full set of 4D data of lower limb muscles at rest and during exercise. These data can further be extended to a 5D data by adding metabolic data obtained from PET images. Our data structure and corresponding image processing extension allows for better evaluation of large volumes of multidimensional imaging data that are acquired and processed to generate dynamic models of the moving lower limb and its muscular function.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.