KEYWORDS: Optical fibers, Data transmission, Data communications, Time division multiplexing, Optical communications, Optical networks, Field programmable gate arrays, Passive optical networks, Fiber optic communications, Control systems
Passive Optical Network (PON), which possess the advantages of high efficiency, high speed and high bandwidth utilization, is a type of fiber channel technology that acquires the most concern. As a type of key technology in military weapon electronic system, the target of fiber channel data bus is to offer actual-time, high-speed and reliable communication link between instruments. In this article, a type of fiber channel data bus, which is based on PON topology, is raised and elaborated. The elaboration is concentrated on the designation of the topology and protocol used in the fiber channel data bus. On this basis, the research emphasis is the upstream Media Access Control (MAC) layer in the Network Terminal (NT) of the fiber channel data bus which is designed. Firstly, the upstream synchronization method and frame structure in GPON standards are analysed. Then, the upstream MAC layer control is actualized through Xilinx FPGA devices.
In the indoor visible light communication (VLC) system, the light source has the dual function of illumination and communication. Due to the different size of indoor space and indoor facilities, it will inevitably lead to different indoor light power distribution. In order to achieve the optimal communication effect, the layout of the light source must be reasonably designed so that the receiving power distribution is relatively uniform on the same horizontal plane in the room. The current layout methods are mostly based on the square plane three-dimensional space, while the layout methods of the rectangular plane three-dimensional space are rarely studied. In this paper, a room with size 5m×4m×3m is used as a model. Firstly, according to the shock response principle, the optimal layout of four LED lights is obtained through theoretical calculations, so that the received light power fluctuation in the z=h plane in this room is minimized. Then, according to a set of simulation parameters, the theoretical optimal layout with the minimum fluctuation of receiving optical power in the h=0.75m plane in the room is calculated, and then Matlab is used to simulate the received optical power distribution of the plane under different layouts. The simulation results are consistent with the theoretical calculations. Finally, the illumination distribution under the optimal layout is calculated to verify that the designed optimal layout meets the international illumination standards. The light source layout model designed in this paper not only meets the illumination standards, but also ensures the reliability of communication. It provides an optimization method for the layout of indoor visible light communication LED light source.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.