Several potentially conducting polymers, optically nonlinear polymers, and biomaterials contain heterocyclic structures. Reduction of the energy band gap of a conjugated polymer is a topic of considerable interest due to the possible elimination of doping in the preparation of highly conductive polymers. Control of the energy gap value of a polymer by molecular design could modify its optical, electronic and optoelectronic properties. Thiadiazoles and their derivatives are the structural basis of some of these polymeric materials. The results of the calculation of the HOMO-LUMO gap, the dipole moment and polarizability of thiadiazole oligomers in vacuo and in the presence of solvents are reported. The calculations are based on density functional theory using a specially tailored model chemistry. The potential utility of these materials for the development of chemical sensors is discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.