Kenneth Strain, B. Allen, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. Barr, S. Berukoff, A. Bunkowski, Gianpietro Cagnoli, C. Cantley, M. Casey, S. Chelkowski, D. Churches, T. Cokelaer, C. Colacino, David Crooks, C. Cutler, Karsten Danzmann, R. Davies, Rejean Dupuis, E. Elliffe, Carsten Fallnich, A. Franzen, A. Freise, S. Gossler, A. Grant, H. Grote, S. Grunewald, J. Harms, Gerhard Heinzel, Ik Heng, A. Hepstonstall, M. Heurs, M. Hewitson, S. Hild, James Hough, Y. Itoh, R. Jones, S. Huttner, K. Kawabe, Christian Killow, K. Koetter, B. Krishnan, V. Leonhardt, Harald Lueck, B. Machenschalk, M. Malec, R. Mercer, Christopher Messenger, S. Mohanty, Kasem Mossavi, S. Mukherjee, P. Murray, S. Nagano, G. Newton, M. Papa, M. Perreur-Lloyd, M. Pitkin, M. Plissi, V. Quetschke, Virginia Re, S. Reid, L. Ribichini, D. Robertson, Norna Robertson, J. Romano, Sheila Rowan, Albrecht Ruediger, Bangalore Sathyaprakash, R. Schilling, R. Schnabel, B. Schutz, F. Seifert, A. Sintes, J. Smith, Peter Sneddon, I. Taylor, R. Taylor, A. Thuering, Carlo Ungarelli, H. Vahlbruch, Alberto Vecchio, J. Veitch, Harry Ward, U. Weiland, Herbert Welling, P. Williams, Benno Willke, Walter Winkler, Graham Woan, Ivo Zawischa
The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode.
Benno Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. Barr, S. Berukoff, S. Bose, Gianpietro Cagnoli, M. Casey, D. Churches, C. Colacino, David Crooks, C. Cutler, K. Danzmann, R. Davies, Rejean Dupuis, E. Elliffe, Carsten Fallnich, A. Freise, S. Gossler, A. Grant, H. Grote, J. Harms, G. Heinzel, S. Herden, A. Hepstonstall, M. Heurs, M. Hewitson, James Hough, O. Jennrich, K. Kawabe, K. Koetter, V. Leonhardt, H. Lueck, M. Malec, Paul McNamara, Kasem Mossavi, S. Mohanty, S. Mukherjee, S. Nagano, G. Newton, B. Owen, M. Papa, M. Plissi, V. Quetschke, L. Ribichini, D. Robertson, N. Robertson, Sheila Rowan, Albrecht Ruediger, B. Sathyaprakash, R. Schilling, B. Schutz, F. Seifert, A. Sintes, K. Skeldon, Peter Sneddon, Kenneth Strain, I. Taylor, C. Torrie, Alberto Vecchio, H. Ward, U. Weiland, Herbert Welling, P. Williams, Walter Winkler, G. Woan, Ivo Zawischa
KEYWORDS: Sensors, Mirrors, Interferometers, Michelson interferometers, Data analysis, Data acquisition, Buildings, Control systems, Photodetectors, Laser systems engineering
The GEO600 laser interferometric gravitational wave detector is approaching the end of its commissioning phase which started in 1995.
During a test run in January 2002 the detector was operated for 15 days in a power-recycled michelson configuration. The detector and environmental data which were acquired during this test run were used to test the data analysis code. This paper describes the subsystems of GEO600, the status of the detector by August 2002 and the plans towards the first science run.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.