KEYWORDS: Atmospheric Cherenkov telescopes, Data acquisition, Cameras, Control systems, Telescopes, Interferometry, Data centers, Software development, Computer architecture, Quality systems
The ASTRI Mini-Array is an international collaboration led by the Italian National Institute for Astrophysics. This project aims to construct and operate an array of nine Imaging Atmospheric Cherenkov Telescopes to study gamma-ray sources at very high energy (TeV) and perform stellar intensity interferometry observations. We describe the software architecture and the technologies used to implement the Online Observation Quality System (OOQS) for the ASTRI Mini-Array project. The OOQS aims to execute data quality checks on the data acquired in real-time by the Cherenkov cameras and intensity interferometry instruments, and provides feedback to both the Central Control System and the Operator about abnormal conditions detected. The OOQS can notify other sub-systems, triggering their reaction to promptly correct anomalies. The results from the data quality analyses (e.g. camera plots, histograms, tables, and more) are stored in the Quality Archive for further investigation and they are summarised in reports available to the Operator. Once the OOQS results are stored, the operator can visualize them using the Human Machine Interface. The OOQS is designed to manage the high data rate generated by the instruments (up to 4.5 GB/s) and received from the Array Data Acquisition System through the Kafka service. The data are serialized and deserialized during the transmission using the Avro framework. The Slurm workload scheduler executes the analyses exploiting key features such as parallel analyses and scalability.
Gamma-Flash is an Italian project funded by the Italian Space Agency (ASI) and led by the National Institute for Astrophysics (INAF), devoted to the observation and study of high-energy phenomena, such as terrestrial gamma-ray flashes and gamma-ray glows produced in Earth’s atmosphere during thunderstorms. The project represents the ground-based supplement to the work of the ASI AGILE satellite in this particular field. This contribution presents the architecture of the Gamma-Flash data pipeline placed at the Osservatorio Climatico “O. Vittori” on the top of Mt. Cimone (2165 m a.s.l., Northern-Central Italy). It consists of RedPitaya ARM-FPGA boards designed for acquiring events at different energies from scintillator crystals coupled to photomultiplier tubes, and a main computer that executes a real-time software pipeline. The software performs several data processing steps, data acquisition, data reduction level, algorithms for waveform selection, and finally it produces the cumulative energy spectrum of the gamma radiation collected by the photomultipliers. Data is stored in different layers, each with a different purpose, and it is available to the scientific community as HDF5 files. The pipeline has a modular architecture to provide good maintenance and flexibility, allowing for easy extensions in the future. A specific subset of data is stored in a database connected to a real-time graphical dashboard for quick-look analysis, showing the acquisition products and the environmental telemetry data.
The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Project was born as a collaborative international effort led by the Italian National Institute for Astrophysics (INAF) to design and realize an end-to-end prototype of the Small-Sized Telescope (SST) of the Cherenkov Telescope Array (CTA) in a dual-mirror configuration (2M). The prototype, named ASTRI-Horn, has been operational since 2014 at the INAF observing station located on Mt. Etna (Italy). The ASTRI Project is now building the ASTRI Mini-Array consisting of nine ASTRI-Horn-like telescopes to be installed and operated at the Teide Observatory (Spain). The ASTRI software is aimed at supporting the Assembly Integration and Verification (AIV), and the operations of the ASTRI Mini-Array. The Array Data Acquisition System (ADAS) includes all hardware, software and communication infrastructure required to gather the bulk data of the Cherenkov Cameras and the Intensity Interferometers installed on the telescopes, and make these data available to the Online Observation Quality System (OOQS) for the on-site quick look, and to the Data Processing System (DPS) for the off-site scientific pipeline. This contribution presents the ADAS software architecture according to the use cases and requirement specifications, with particular emphasis on the interfaces with the Back End Electronics (BEE) of the instruments, the array central control, the OOQS, and the DPS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.