The fast modulation of lasers is a fundamental requirement for applications in optical communications, high-resolution spectroscopy and metrology. Here, we report a new mechanism to modulate the emission from a terahertz frequency quantum cascade laser (QCL) device , whereby optically-generated acoustic phonon pulses are used to perturb the QCL bandstructure, enabling fast amplitude modulation that can be controlled using the QCL drive current or strain pulse amplitude. We show that this modulation can be explained using a perturbation theory analysis.
In the past decade, sound amplification by the stimulated emission of (acoustic phonon) radiation (saser) devices for generating coherent terahertz (THz) acoustic waves have been demonstrated [1 – 3]. The devices exploit the electron-phonon interactions in periodic semiconductor nanostructures known as superlattices (SLs) to amplify acoustic phonons. In addition, the particular acoustic properties of SLs can be exploited to make mirrors and cavities for THz phonons. Thus SLs can provide the two essential elements of a saser: the acoustic gain medium and the acoustic cavity.
In this presentation I will describe experimental studies of the THz phonon dynamics in a weakly-coupled GaAs/AlAs saser SL, which is DC electrically biased into the Wannier-Stark regime. Picoseconds-duration pulses of coherent THz acoustic phonons were generated using pump light pulses from a femtosecond laser and injected into the SL device. These phonon pulses seeded the saser cavity modes at about 220 and 440 GHz, which were amplified within the device. The phonons were detected using two methods: reflection of femtosecond probe light pulses, in a conventional pump-probe arrangement, and through the transient electrical response of the device itself.
When the DC bias conditions for saser were achieved in the device, the amplitude and lifetime of the seeded modes were both increased, analogous to the threshold and spectral line narrowing effects seen in laser devices.
[1] R P Beardsley et al., Phys. Rev. Lett. 104, 085501 (2010).
[2] W Maryam et al., Nature Communications 4:2184 (2013).
[3] K Shinokita et al., Phys. Rev. Lett. 116, 075504 (2016).
Photonic integrated circuits based on III-V semiconductor polarization-maintaining waveguides were designed and fabricated for the first time for application in a compact cold-atom gravimeter1,2 at an operational wavelength of 780 nm. Compared with optical fiber-based components, semiconductor waveguides achieve very compact guiding of optical signals for both passive functions, such as splitting and recombining, and for active functions, such as switching or modulation. Quantum sensors, which have enhanced sensitivity to a physical parameter as a result of their quantum nature, can be made from quantum gases of ultra-cold atoms. A cloud of ultra-cold atoms may start to exhibit quantum-mechanical properties when it is trapped and cooled using laser cooling in a magneto-optical trap, to reach milli-Kelvin temperatures. The work presented here focuses on the design and fabrication of optical devices for a quantum sensor to measure the acceleration of gravity precisely and accurately. In this case the cloud of ultra-cold atoms consists of rubidium (87Rb) atoms and the sensor exploits the hyperfine structure of the D1 transition, from an outer electronic state of 5 2S ½ to 5 2P3/2 which has an energy of 1.589 eV or 780.241 nm. The short wavelength of operation of the devices dictated stringent requirements on the Molecular Beam Epitaxy (MBE) and device fabrication in terms of anisotropy and smoothness of plasma etch processes, cross-wafer uniformities and alignment tolerances. Initial measurements of the optical loss of the polarization-maintaining waveguide, assuming Fresnel reflection losses only at the facets, suggested a loss of 8 dB cm-1, a loss coefficient, α, of 1.9 (±0.3) cm-1.
We have generated pulsed beams of longitudinal and transverse polarized acoustic phonons by ultra fast optical excitation of gallium arsenide/aluminium arsenide superlattice structures. The phonons propagated ballistically over macroscopic (~ mm) distances at low temperatures and were detected using superconducting bolometers. We used superlattice phonon filters and the frequency-dependent phonon scattering in gallium arsenide to analyse the phonon spectrum. The phonons were found to be monochromatic, with a centre frequency given by υ = cs/dSL, where cs is the phonon speed and dSL is the superlattice period, and having a spectral line width (full width at half maximum) of less than 50 GHz. We measured a mean free path of 0.8 mm for both the longitudinal and transverse modes, consistent with point defect scattering in the GaAs substrate. Such phonons, with frequencies in the THz range, have potential applications in a number of areas, e.g. acoustic microscopy of solid-state nanostructures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.