Advances in porous silicon (pSi) technology have led to the development of new sensitive biosensors. The unique optical properties of pSi renders the material a perfect candidate for optical transducers exploiting photoluminescence or white light interference effects. The ability of biosensors exploiting these transduction mechanisms to quickly and accurately detect biological target molecules affords an alternative to current bioassays such as enzyme-linked immunosorbent assays (ELISAs). Here, we present a pSi biosensor that was developed to detect antibodies against the autoimmune protein La. This protein is associated with autoimmune diseases including rheumatic disorders, systematic lupus erythematosus (SLE) and Sjogren's syndrome (SS). A fast and sensitive detection platform such as the one described here can be applied to the rapid diagnosis of these debilitating autoimmune diseases. The immobilisation of the La protein onto pSi films gave a protein receptor-decorated sensor matrix. A cascade of immunological reactions was then initiated to detect anti-La antibody on the functionalised pSi surface. In the presence of o-phenylenediamine (OPD), horseradish peroxidase (HRP)/H2O2 catalysed the formation of an oxidised radical species that accelerated pSi corrosion. pSi corrosion was detected as a blue-shift in the generated interference pattern, corresponding to a decrease in the effective optical thickness (EOT) of the pSi film. Compared to an ELISA, the pSi biosensor could detect the anti-La antibody at a similar concentration (500 - 125 ng/ml). Furthermore, we found that the experimental process can be significantly shortened resulting in detection of the anti-La antibody in 80 minutes compared to a minimum of 5 hours required for ELISA.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.