The use of magnetic actuators at the microscale has so far been limited when compared with the alternative electrostatic approach. This is mainly due to the fabrication difficulties encountered when producing magnetic components at the microscale. However, the force available from a magnetic actuator far exceeds that of its electrostatic counterpart for a given footprint area, as the magnetic devices have a greater potential to be fabricated into the third dimension. The ability to create multiple layer microcoils, easily and reproducibly, would greatly exploit this fact, enabling devices to be constructed that can produce actuation forces/distances far in excess of any other currently available microtechnology. To this end, the fabrication of two types of multiple layer coil has been investigated, both based around the ultra-thick negative photoresist, SU-8. Single, double and quadruple layer coils have been fabricated in electroplated copper and a commercially available silver colloidal paint. The fabrication times and processing steps have been assessed for each, together with the respective conductivities and the maximum current densities, before burnout of the conductors. The thermal implications of stacked multi layered coils have also been assessed. The coils fabricated have a diameter of 0.93mm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.