optofluidics ,
single molecule spectroscopy/tracking ,
ring resonator ,
laser spectroscopy ,
droplet resonator ,
optical biological and chemical sensor
Confocal microscopy offers enhanced image contrast and signal-to-noise ratio compared to wide-field illumination microscopy, achieved by effectively eliminating out-of-focus background noise. In our study, we initially showcase the functionality of a line-scanning confocal microscope aligned through the utilization of a Digital Light Projector (DLP) and a rolling shutter CMOS camera. In this technique, a sequence of illumination lines is projected onto a sample using a DLP and focusing objective (50X, NA=0.55). The reflected light is imaged with the camera. Line-scanning confocal imaging is accomplished by synchronizing the illumination lines with the rolling shutter of the sensor, leading to a substantial enhancement of approximately 50% in image contrast. Subsequently, this setup is employed to create a dataset comprising 500 pairs of images of paper tissue. This dataset is employed for training a Generative Adversarial Network (cGAN). Roughly 45% contrast improvement was measured in the test images for the trained network, in comparison to the ground-truth images.
In this work, in addition to the sensor application of coated optical microresonator, we show the phase transition of Pd-H system using WGMs. WGMs are propagating on a cylindrical microresonator which is based on a single mode optical fiber coated with a desired metal thickness and desired morphology. Light coupling is achieved by tapered fiber connected to a tunable laser working in the infrared wavelength. WGMs are observed and tracked by transmitted laser light. The sensor consisting of the resonator and a tapered fiber is placed in a metal chamber that is connected to the gas tanks. Desired concentration of the gas is achieved by mixing the carrier gas (nitrogen) and hydrogen. By increasing or decreasing of the hydrogen concentration in the sensing chamber, palladium layer expands or contracts. The change in the radius of the resonator translates in to shifts in spectral positions of the WGMs. However, these expansion or contractions rates are different for different phases of the Pd – H system. For instance, solid solution of hydrogen in palladium, represented by α has the lowest expansion or contraction. In contrast β phase has the highest rate. These phase transitions and intermediate phase are shown using the WGMs.
We present a novel active fiber cavity platform for biosensing applications at 1550nm. We employed the phase shift-cavity ring down spectroscopy to the amplified fiber cavity and demonstrate sensing of sugar solutions with sensitivity and detection limit of 2659o/RIU and 1.11 × 10-5 RIU, respectively.
Fluorescence imaging of sub-cellular structures with sizes below the diffraction limit is vital in understanding cel- lular processes. Relying on exciting the sample with different illumination patterns and image processing for the elimination of background fluorescence, Structured Illumination Microscopy (SIM) provides imaging capability beyond diffraction limit using relatively simple optical setups. Here, we present a laser-free, DLP projector-based, and GPU-implemented SIM super resolution microscope. Sub-diffractive biological structures were imaged with a lateral resolution of ∼150 nm. The microscopy system is LED-based and entirely home-built which enables customizable operation at a low cost.
In this work, we present robust and easy-to-fabricate optical gas and vapor sensors based on optical fiber resonators (OFR) coated with palladium (Pd) thin films, Pd micro-particles and polymer brushes (PB). Pd based sensors are used for hydrogen (H2) gas detection in concentration range of 0% to 1% and polymer brush-coated OFR are used for detection of vapor in concentration range of 0 to 25%. Sensing mechanism of these sensors is based on spectral shift of resonance wavelength which are called whispering gallery modes (WGMs). This spectral shift is due to volume expansion of the sensing material. Tapered fiber is used in order to excite WGMs in coated OFRs. Good sensitivity and repeatability results are obtained for all three types of sensors.
Measurement of composition of mixtures at high pressures is important in many applications such as supercritical drying of aerogels, high-pressure sterilization and synthesis of nanostructured materials. The frequency response of uncoated microcantilevers immersed in ethanol-CO2 mixtures with compositions ranging from 0.85 to 4 weight % of ethanol in ethanol-CO2 were measured at a temperature of 318 K and pressure range of 10 MPa to 22 MPa. The resonant frequencies and Q-factors were found to decrease with the increasing weight % of ethanol in the mixture. The data indicate that the composition of a mixture can be measured by measuring the resonant frequency of the cantilever in the mixture after obtaining a calibration curve by measuring resonant frequencies of mixtures with known composition. The sensitivity of the technique which is defined as the ratio of resonant frequency shift to the change in fluid mixture was investigated. An analytical expression for sensitivity was derived using Sader’s model. The sensitivity was found to be a complex function of density and viscosity of the mixture as well as the length, density and width of the cantilever. Using the density and viscosity data in the literature for ethanol-CO2 mixtures with various compositions, the sensitivity of the cantilevers were calculated at each pressure and temperature. The results indicate that the minimum composition that can be measured with the current setup is between 480 ppm and 980 in the pressure range of 10 MPa to 22 MPa by using a 150 µm long cantilever and between 600 and 1450 ppm by using 200 µm long cantilever.
Acknowledgment: - This project has received funding from the European Union´s Horizon 2020 research and innovation programme under grant agreement No 685648.
Here, we demonstrate a new type of microphotoreactor formed by a liquid-core optofluidic waveguide fabricated inside aerogel monoliths. It consists of microchannels in a monolithic aerogel block with embedded anatase titania photocatalysts. In this reactor system, aerogel confines core liquid within internal channels and, simultaneously, behave as waveguide cladding due to its extremely low refractive index of ~1. Light is confined in the channels and is guided by total internal reflection (TIR) from the channel walls. We first fabricated L-shaped channels within silica aerogel monoliths (ρ= 0.22 g/cm3, n=1.06) without photocatalyst for photolysis reactions. Using the light delivered by waveguiding, photolysis reactions of methylene blue (MB) were carried out in these channels. We demonstrated that MB can be efficiently degraded in our optofluidic photoreactor, with the rate of dye photoconversion increasing linearly with increasing power of incident light. For photocatalytic transformation in this reactor system, titania particles were successfully embedded into the mesoporous network of silica aerogels with varying amount of the titania in the structure from 1.7 wt % to 50 % wt. The presence of titania and its desired crystalline structure in aerogel matrix was confirmed by XRF, XRD patterns and SEM images. Band gap of silica-titania composites was estimated from Tauc plot calculated by Kubelka-Munk function from diffuse reflectance spectra of samples as near expected value of ≈ 3.2 eV. Photocatalytic activity and kinetic properties for photocatalytic degradation of phenol in the channels were investigated by a constant flow rate, and longer-term stability of titania was evaluated.
Optical fiber resonator (OFR) sensor is presented for bulk liquid refractive index (RI) sensing. The sensing mechanism relies on the spectral shifts of whispering gallery modes (WGMs) of OFRs which are excited using a tapered fiber. OFR liquid RI sensor is fully characterized using water solutions of ethanol and ethylene glycol (EG). A good agreement is achieved between the analytical calculations and experimental results for both TE and TM polarizations. The detection limit for bulk RI is calculated to be between 2.7 – 4.7 × 10−5 refractive index unit (RIU). The OFR sensor provides a robust, easy-to-fabricate and sensitive liquid refractive index sensor which can be employed in lab-on-a-chip applications.
Emulsion droplets of liquid crystals (LC) suspended in water and labeled with a suitable fluorescent dye can serve as active optofluidic microcavities, since the contrast of refractive index between the LC droplets and the surrounding aqueous medium allows excitation of whispering gallery modes (WGMs) in the droplets. In addition, such emulsion droplets can be also stably trapped in three-dimensions using optical tweezers which stabilizes the droplets while investigating their spectral characteristics. We explore various combinations of fluorescently dyed LC droplets and host liquid - surfactant systems and show that the WGM emission spectrum of an optically trapped LC droplet-based cavity can be largely and (almost) reversibly tuned by controlled changes of the ambient temperature that induce phase transitions in the LC droplets. Our results indicate feasibility of this approach for creating miniature tunable sources of coherent light.
The integration of optofluidic laser and FRET mechanism provides novel research frontiers, including sensitive biochemical analysis and novel photonic devices, such as on-chip coherent light sources and bio-tunable lasers. Here we investigated an optofluidic FRET laser using quantum dots (QDs) as FRET donors. We achieved lasing from Cy5 as the acceptor in the QD-Cy5 pair with excitation at 450 nm where Cy5 has negligible absorption by itself. The threshold was approximately 14 μJ/mm2. The demonstrated capability of QDs as the donor in a FRET laser greatly improves the versatility of optofluidic laser operation due to the broad and large absorption cross section of QDs in the blue and UV spectral region. The excitation efficiency of the acceptor molecules through FRET channel was also analyzed, showing that the energy transfer rate and the non-radiative Auger recombination rate of QDs plays a significant role in FRET laser performance.
We achieved four types of laser emissions with quantum dots (QDs) using the same high-Q-factor optofluidic ring resonator (OFRR) platform. In the first type, 2 μM QDs dissolved in toluene that filled the entire OFRR cavity volume were employed as the gain medium. The lasing threshold was 15-22 μJ/mm2. In the second type, 2 μM aqueous QDs were in bulk buffer solution that filled the entire OFRR cavity volume. The lasing threshold was 0.1 μJ/mm2, over 3 orders of magnitude lower than the state-of-the-art. In the third type, the aqueous QDs were immobilized as a single layer on the interface between the OFRR inner wall and buffer solution with a surface density as low as 3×109 − 1010cm−2. The lasing threshold of 60 μJ/mm2 was achieved. In the fourth type, we achieved optofluidic FRET lasing using aqueous QDs as FRET donors and Cy5 dye molecules as acceptors. We observed lasing from Cy5 emission band in QD-Cy5 pair when excited at QD absorption band, far away from Cy5 absorption maximum. We also report a comprehensive theoretical analysis of optofluidic FRET lasers that was performed based on a Fabry-Perot microcavity using a rate equation model. By comparing FRET lasingbased sensors with conventional sensors using FRET signals obtained by spontaneous fluorescence emission, we show that for optimal pump fluence and FRET pair concentration, FRET lasing can lead to more than 20-fold enhancement in detection sensitivities of conformation changes for linker lengths in the Förster radius range.
An SU-8 polymer microdisk resonator coated with a palladium (Pd) layer and coupled to a single-mode optical waveguide is used to as a hydrogen (H2) gas sensor. In the presence of H2, a red shift is observed in the spectral positions of the microdisk whispering gallery modes (WGMs) due to the expansion in the Pd lattice. H2 concentrations below the flammable limit (4%) down to 0.3% could be detected in nitrogen atmosphere at room temperature. For H2 concentrations between 0.3 − 1%, WGM spectral positions shifted linearly with H2 concentration at a rate of 32 pm/%H2. Average response time of the devices was measured to be 50 s for 1% H2. The proposed device concept can also be used to detect different chemical gases by using appropriate sensing layers.
We present a new method to form liquid-core optofluidic waveguides inside hydrophobic silica aerogels. Due to their
unique material properties, aerogels are very attractive for a wide variety of applications; however, it is very challenging
to process them with traditional methods such as milling, drilling, or cutting because of their fragile structure. Therefore,
there is a need to develop alternative processes for formation of complex structures within the aerogels without
damaging the material. In our study, we used focused femtosecond laser pulses for high-precision ablation of
hydrophobic silica aerogels. During the ablation, we directed the laser beam with a galvo-mirror system and,
subsequently, focused the beam through a scanning lens on the surface of bulk aerogel which was placed on a three-axis
translation stage. We succeeded in obtaining high-quality linear microchannels inside aerogel monoliths by
synchronizing the motion of the galvo-mirror scanner and the translation stage. Upon ablation, we created multimode
liquid-core optical waveguides by filling the empty channels inside low-refractive index aerogel blocks with highrefractive
index ethylene glycol. In order to demonstrate light guiding and measure optical attenuation of these
waveguides, we coupled light into the waveguides with an optical fiber and measured the intensity of transmitted light as
a function of the propagation distance inside the channel. The measured propagation losses of 9.9 dB/cm demonstrate the
potential of aerogel-based waveguides for efficient routing of light in optofluidic lightwave circuits.
We introduce tunable optofluidic microlasers based on optically stretched or thermally modified, dye-doped emulsion droplets of liquid crystals (LC) confined in a dual-beam optical trap. Droplets were created in microfluidic chips or by shaking. Optically trapped microdroplets emulsified in water and stained with fluorescent dye act as an active ultrahigh-Q optical resonant cavity hosting whispering gallery modes (WGMs). Tuning of the laser emission wavelength was achieved by a controlled deformation of the droplet shape using light-induced forces generated by dual-beam optical trap and by thermal changing of the order in the LC.
We have built a complex apparatus for optical trapping, stretching, heating and concurrent whispering gallery mode (WGM) lasing excitation of liquid crystal (LC) emulsion micro-droplets doped with various fluorescent dyes. We have explored the changes of WGM lasing wavelength when the LC droplets were optically stretched or electrically heated beyond the transition to the isotropic phase. We have found that the range of lasing wavelengths was in some cases considerably higher than when we optically stretched ordinary fluorescent oil droplets in our previous experiments.
We introduce tunable optofluidic microlasers based on active optical resonant cavities formed by optically stretched, dye-doped emulsion droplets confined in a dual-beam optical trap. To achieve tunable dye lasing, optically pumped droplets of oil dispersed in water are stretched by light in the dual-beam trap. Subsequently, resonant path lengths of whispering gallery modes (WGMs) propagating in the droplet are modified, leading to shifts in the microlaser emission wavelengths. We also report lasing in airborne, Rhodamine B-doped glycerolwater droplets which were localized using optical tweezers. While being trapped near the focal point of an infrared laser, the droplets were pumped with a Q-switched green laser. Furthermore, biological lasing in droplets supported by a superhydrophobic surface is demonstrated using a solution of Venus variant of the yellow fluorescent protein or E. Coli bacterial cells expressing stably the Venus protein. Our results may lead to new ways of probing airborne particles, exploiting the high sensitivity of stimulated emission to small perturbations in the droplet laser cavity and the gain medium.
We introduce tunable optofluidic microlasers based on optically stretched, dye-doped emulsion droplets confined
in a dual-beam optical trap. Optically trapped microdroplets of oil emulsified in water and stained with
fluorescent dye act as active ultrahigh-Q optical resonant cavities hosting whispering gallery modes (WGMs)
which enable dye lasing with low threshold pump powers. In order to achieve tunable dye lasing, the droplets are
pumped with a pulsed green laser beam and simultaneously stretched by light in the dual-beam trap. For a given
stretching power, the magnitude of the droplet deformation is dictated by the interfacial tension between the
droplet and the host liquid which is adjustable by adding surfactants. Increase of power of the dual-beam trap
causes a directly proportional change of the droplet stretching deformation. Subsequently, resonant path lengths
of different WGMs propagating in the droplet are modified, leading to shifts in the corresponding microlaser
emission wavelenghts. Using this technique, we present all-optical, almost reversible spectral tuning of the lasing
WGMs and show that the direction of wavelength tuning depends on the position of the pump beam focus on the
droplet, consistent with the deformation of originally spherical droplet towards a prolate spheroid. In addition,
we study the effects of changes of the droplet and immersion medium temperature on the spectral position of
lasing WGMs and demonstrate that droplet heating leads to red-tuning of the droplet lasing wavelength.
We present dye lasing from optically manipulated glycerol-water aerosols with diameters ranging between 7.7 and
11.0 μm confined in optical tweezers. While being optically trapped near the focal point of an infrared laser, the
droplets stained with Rhodamine B were pumped with a Q-switched green laser and their fluorescence emission
spectra featuring whispering gallery modes (WGMs) were recorded with a spectrograph. Nonlinear dependence
of the intensity of the droplet WGMs on the pump laser fluence indicates dye lasing. The average wavelength
of the lasing WGMs could be tuned between 600 and 630 nm by adjusting the droplet size. These results may
lead to new ways of probing airborne particles, exploiting the high sensitivity of stimulated emission to small
perturbations in the droplet laser cavity and the gain medium.
Large deformations can easily be introduced in liquid microdroplets by applying relatively small external forces or controlling the evaporation/condensation kinetics. This makes liquid microdroplets attractive to serve as the building blocks of largely tunable optical switches or filters that are essential in optical communication systems based on wavelength division multiplexing. Solid optical microcavities have not found large use in these applications, mainly due to their rigid nature. The fact that liquid microdroplets are low-cost and disposable can also prove to be important in mass production of these photonic devices.
Here, we show that local heating with an infrared laser can be used to largely tune the whispering gallery modes (WGMs) of water/glycerol or salty water microdroplets standing on a superhydrophobic surface. In the scheme presented, a liquid microdroplet kept in a humidity chamber is stabilized on a superhydrophobic surface, and an infrared laser beam is focused near the center of the microdroplet. As a result of the local heating, the temperature of the liquid microdroplet increases, and the water content in the liquid microdroplet evaporates until a new equilibrium is reached. At the new equilibrium state, the non-volatile component (i.e. glycerol or salt) attains a higher concentration in the liquid microdroplet.
We report tunability over large spectral ranges up to 30 nm at around 590 nm. For salty water microdroplets the reported spectral tuning mechanism is almost fully reversible, while for the case of glycerol/water microdroplets the spectral tuning mechanism can be made highly reversible when the chamber is saturated with glycerol vapor and the relative water humidity approaches unity.
Glycerol/water microdroplets take almost spherical shapes when standing on a superhydrophobic surface. Hence they are suitable to function as optical microcavities. Using Rhodamine B doped water microdroplets, large spectral tunability of the whispering gallery modes (WGMs) (>5 nm) was observed. Tunability was achieved by evaporation/condensation in a current controlled mini humidity chamber. Experiments revealed a mechanism stabilizing the volume of these microdroplets with femtoliter resolution. The mechanism relied on the interplay between the condensation rate that was kept constant and the size dependent laser induced heating. The radii of individual water microdroplets (>5 µm) stayed within a few nanometers during long time periods (several minutes). By blocking the laser excitation for 500 msec, the stable volume of individual microdroplets were changed stepwise. Laser emission was also observed from Rhodamine B doped glycerol/water microdroplets using a pulsed, frequency-doubled Nd:YAG laser (=532 nm) as the excitation source. The observed largely tunable WGMs and laser emission can pave way for novel applications in optical communication systems. Besides due to the sensitivity of the WGMs to the size and shape of the microdroplets, the results can find applications in characterizing superhydrophobic surfaces and investigating liquid-solid surfaces.
A single photon source which generates transform limited single photons is highly desirable for applications in quantum optics. Transform limited emission guarantees the indistinguishability of the emitted single photons. This, in turn brings groundbreaking applications in linear optics quantum information processing within an experimental reach. Recently, self-assembled InAs quantum dots and trapped atoms have successfully been demonstrated as such sources for highly indistinguishable single photons.
Here, we demonstrate that nearly transform limited zero-phonon-line (ZPL) emission from single molecules can be obtained by using vibronic excitation. Furthermore we report the results of coincidence detection experiments at the output of a Michelson-type interferometer. These experiments reveal Hong-Ou-Mandel correlations as a proof of the indistinguishability of the single photons emitted consecutively from a single molecule. Therefore, single molecules constitute an attractive alternative to single InAs quantum dots and trapped atoms for applications in linear optics quantum information processing.
Experiments were performed with a home-built confocal microscope keeping the sample in a superfluid liquid Helium bath at 1.4K. We investigated terrylenediimide (TDI) molecules highly diluted in hexadecane (Shpol'skii matrix). A continuous wave single mode dye laser was used for excitation of vibronic transitions of individual molecules. From the integral fluorescence, the ZPL of single molecules was selected with a spectrally narrow interference filter. The ZPL emission was then sent to a scanning Fabry-Perot interferometer for linewidth measurements or a Michelson-type interferometer for coincidence detection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.