We have developed a new method for optical limiting using a system of coupled optical cavities with a PTsymmetric spectrum of reflectionless modes. The optical limiting occurs when the PT symmetry is broken due to the thermo-optic effect in one of the cavities. In our experiment, we used a two-cavity resonator with PT-symmetric spectral degeneracy of reflectionless modes created from alternating layers of cryolite and ZnS. We demonstrated optical limiting by measuring a single 532-nm 6-ns laser pulse. Our experimental results are supported by thermo-optical simulations, which provide deeper insight into the dynamics of the limiting process. Compared to existing limiter designs, our optical limiter offers a customizable limiting threshold, high damage threshold, nanosecond activation time, and broadband laser protection. Additionally, we have shown a method to achieve an even broader transmission spectral bandwidth by implementing this concept in a four-cavity resonator with greater coupling strength using similar materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.