AlrBUS

Differential common path interferometry for picometre surface metrology

A. Schultze ${ }^{1}$, A. Sell ${ }^{1}$, H. Kögel ${ }^{1}$, D. Weise ${ }^{1}$, and C. Braxmaier ${ }^{2,3}$

${ }^{1}$ Airbus Defence and Space, 88039 Friedrichshafen, Germany
${ }^{2}$ Universität Bremen, ZARM, Am Fallturm 2, 28359 Bremen, Germany
${ }^{3}$ DLR Institut für Raumfahrtsysteme, Robert-Hooke-Str. 7, 28359 Bremen, Germany

Motivation

Future gravitational wave research missions would benefit from spherical gravitational reference sensors (GRS):

- Single GRS design

- Fully suspension-free operation possible
- Strongly reduced actuation-crosstalk acceleration noise due to fewer actuated degrees of freedom.
- Strongly reduced tilt-to-length coupling

Challenges:

- Surface deviations part of the measurement path, requires compensation of the surface map
- On-flight or a-priori surface map determination
- Understanding of tilt-to-length effects at pm scale required

Experimental test bed

- Symmetrical heterodyne interferometer in differential configuration
- 3 interferometers based on Nd:YAG lasers with AOM for frequency shift
- 2 beams sample in Differential configuration ($\times 1 / \times 2$) with an azimuthal beam separation of 56 mrad
- Fixed-reference interferometer for recording lateral position (x) of sphere for compensating sphere center movements
- Full coverage of sphere using second mechanism
- Setup in vacuum chamber on air-cushion dampers

Fig 3: Schematic of the optical setup. Beams (X1-X2) are in symmetrical differential configuration.

Simulation

- Position of the sphere is impacted by error movements of rotation stages and its eccentricity (total residual $\pm 3 \mathrm{~m}$)
- Measurement is geometrically influenced by the shape ($\sim 50 \mathrm{~nm} / \mathrm{m}$) of the and additionally by driving tilt-to-length effects in the optical system ($\sim 1 \mathrm{~nm} / \mathrm{m}$)
- Currently a 2D linear correction fit on the measurement based on the sphere position is proposed

Fig 6: Correction of a circle profile measurement by a fitted $2 D(X-Y)$ linear correction.

Fig 1: Different concepts for GRS configurations. [Gerardi.2014]

Fig 2: Measurement setup in the vacuum chamber.

- Interferometer zero stability < 10 pm for relevant measurement path (x1-x2)
- Per-pixel repeatability of measurement $<2 n m$
- Measurement shows 200 great circles at different elevations, each with 8192 pixels along azimuth direction
- Circles were recorded at 5 deg/s and
low-pass filtered (6 Hz) resulting in an effective spatial resolution of $290 \mathrm{~m}(19 \mathrm{px})$

Post Processing:

- Integration over the beam distance between the two differential arms ($\mathrm{x} 1-\mathrm{x} 2$)

Methdos for circle profile reconstruction from differential measurements:
Fourier-space reconstruction approach or

$$
\begin{gathered}
x(\theta)=l_{X 1}-l_{X 2}=s(\theta)-s\left(\theta+\theta_{b}\right) \\
x(\theta) \xrightarrow{\mathscr{F}} X=S+S \cdot e^{-j \cdot \omega \theta_{b}} \\
S=\frac{X}{1+\epsilon-e^{-j \cdot \omega_{b}}} \xrightarrow{\mathscr{F}^{-1}} s(\theta)
\end{gathered}
$$

Fig 7: Instrument noise: Amplitude spectral density of path-length measurements for a resting sphere.

Fig 8: Performance of differential measurement for one exemplary circle profile. (Middle: Mean, Bottom: Deviation)

Discrete reconstruction approach

- Combination of several circle profiles into a sphere map by a elevation mechanism
- Data shows repetition along elevation after full rotation and mirror of sphere's second dome
- Stitching of several circles along elevation axis

intersection and mapping into spherical coordinates.

Fig 9: Preliminary measurement of a complete sphere surface, covering a range >2pi in elevation angle

Conclusions

- A concept of reconstructing circle profiles and sphere surfaces along a sphere using point interferometers has been proposed.
- Advantage of the method is high suppression of common path errors in the symmetrical differential interferometer path, combined with a compensation for non-common path errors.
- Two integration methods are demonstrated and reconstruction over complete sphere has been shown.
- Very high accuracy of differential measurement below nanometers repeatability was demonstrated
- Integration method very sensitive to periodic errors ($1 / \mathrm{rev}$), which tend to get amplified

Fig 10: Visualisation of all circle profiles measured over different evaluations.

