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Infroduction

This 2009 Spintronics conference in San Diego, California (August 2-5), is the
second edition of a whole conference devoted to spintronics inside the well
known SPIE symposium. More than 40 renowned scientists participated in the
meeting. The conference sets the state of the art in this rapidly evolving field,
with the presentation of fascinating aspects and original developments.

The conference covered many hot topics in spin-dependent metal physics or
in spin-dependent semiconductor physics, ranging from the applications of
spin fransfer to spin coherence in semiconductors and graphene.

Fourteen sessions included the following areas: spin coherence (I and I}, spin
transfer (I and 1), spin injection, multiferroics, spin-dependent tunneling,
magnetization dynamics under spin transfer (I and ll), spin-orbit coupling,
magnetic domain walls under spin transfer, magneto-optical properties and
techniques, and spin dependent tfransport in graphene.

Important and surprising results were presented concerning semiconductor
spintronics, with the observation of very large spin-coherence in non-local
geometry. Also, as with the preceding conference in 2008, a large part of the
conference was devoted to the spin fransfer effects studied on various kinds
of structures and observed with the help of various experimental technigques.
This investigation field is still the object of many fundamental discussions and
promising developments.

Overdall, the conference was an invaluable opportunity for open exchange
and stimulating discussions in a friendly atmosphere. The present proceedings
include a significant number of these conftributions, thus providing extremely
useful references.

We are grateful to SPIE, the organizing committee, and the authors that have
made the conference a success.

Manijeh Razeghi
Henri-Jean M. Drouhin
Jean-Eric Wegrowe






Plenary Paper

Sub-Nanometer Resolution for the Inspection of
Reflective Surfaces Using White Light

Werner Jiiptner, Thorsten Bothe
c/o BIAS, Klagenfurter Str. 2, D-27721 Bremen, Germany

ABSTRACT

The quality control of highly reflective surfaces requires a measurement method which is able to resolve the surface
shape in the nanometer range. Different methods have been developed in the past, e.g. based on interferometry or by
tactile coordinate measurement machines. However, most of them do not match the industrial need for a fast method
which is insensitive to environmental disturbance.

The newly developed method using the reflection of fringe pattern by the surface under test, and therefore called “Fringe
Reflection Technique (FRT)”, overcomes the difficulties of known measurement methods. In this method a pattern of
straight fringes is generated by a monitor. The mirrored pattern is observed by a camera via the object surface under test.
Any deviation of the surface against the ideal, i.e. the mathematically accurate surface will yield a distortion of the
pattern. This distortion is analyzed by an image processing system, called the Fringe Processor. The surface topology is
delivered by local surface gradients which can be integrated to object shape or differentiated to local curvature. The
resolution of the system can be adapted to the measurement requirements in a wide range from micrometer down to sub-
nanometer. Anyhow, the system is stable against environmental disturbances. It works without vibration isolation in
rooms without any climate control. It is possible to measure freeform surfaces with no constraints on object geometry.

The measurement of a silicon mirror surface produced by diamond turning in a high precision tool machine serves as one
example. The surface shape could be determined with a resolution below one nanometer. The measurements match the
results of an interferometer and are better in certain areas.

Keywords: Shape, reflectometry, white light, nanometer resolution, topometry, freeform

1. INTRODUCTION

Shape measurements with a resolution down into the nanometer range are getting an increasingly importance [1], not
only for the micro- and nano-system production but for standard products like coatings on cars or mirrors. Different
metrology technologies have been developed in the past like phase sensitive microscopy, confocal microscopy, atomic
force microscopy, or scanning near field optical microscopy [2]. The majority of these high resolution technologies are
based on a point wise acquisition of the data and a scanning system for the determination of the whole surface topology.
Furthermore, the methods are mostly sensitive to environmental disturbance.

The Fringe Reflection Technology (FRT) [3] is a whole field measurement technique using the imaging of fringes via the
object surface: A fringe system displayed by a monitor is observed after the reflection by the object surface. Any tilt of
the object surface changes the angle of reflection. This yields in a displacement of the fringe system to be measured by
means of an image processing system. The displacement is strongly related to the angle of the surface against the
bisector of the angle between camera normal and monitor normal. If this is the angle of a local part of the surface then it
can be indicated as the surface gradient at this point, i.e. the FRT provides primarily the gradient field of the surface
shape. By integration, the shape can be evaluated down to nanometers [4]. The FRT enables the characterization of
reflective — not even specular — surfaces which cannot be measured by means of standard optical or tactile methods.

The basics of the FRT are described in the first part of this paper. The method can be used in a number of adapted set-
ups. But in principle a monitor with software generated sinusoidal fringes and a CCD camera with an image processing
system is needed. The nest point is the description of the data generation and the resolution that can be achieved
depending on the parameters of the system.

Three examples of application will be described in order to demonstrate the wide variety of possible measurements with
high resolution.

Instrumentation, Metrology, and Standards for Nanomanufacturing lll, edited by Michael T. Postek, John A. Allgair,
Proc. of SPIE Vol. 7405, 740502 - © 2009 SPIE - CCC code: 0277-786X/09/$18 - doi: 10.1117/12.838373 Xi
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2. FUNDAMENTALS OF THE FRINGE REFLECTION TECHNIQUE
2.1 Principle of the FRT and the Set-up
The basic set-up of a fringe reflection set-up comprises three hardware components, Fig.1:

- a monitor to display parallel sinusoidal fringes,
- a CCD camera as a part of an image processing system, and
- the object under investigation.

The camera on top of the monitor, Fig.1a, observes the fringe system via the object under investigation via the test
object, in this case a car front window, Fig.1b left. The object is reflective by condition of the method, i.e. the fringe
system is visible even when the surface is only partly specular. The camera is focused onto the surface of the object,
Fig.1c. This results in a blurred image of the fringe system. However, a sinusoidal fringe remains sinusoidal under
blurred conditions, too. A flat mirror would cause an undistorted image of the fringe system. Any tilt of the surface or a
part of it displaces the related fringe system. A curved object will deform the former straight parallel fringe system
according to the local angle of the surface against the normal or in other terms according to the surface gradient. The
reflected fringe system is measured using a phase shifting method [5] and evaluated by means of an image processing
system [6].

camera

specular object

b) coordinate plane c)

Fig. 1. System components: a) monitor displaying the fringe system and a CCD camera fixed on top of the monitor (dash
line circle), b) car window (test object) at the left and monitor from back side at the right, ¢) schematic sketch

2.2 Geometrical Model and Evaluation

The evaluation will be derived on a geometrical model neglecting the scattered part of the light coming from the object,
Fig.2. A surface angle of Aa/2 against the normal yields a deflection of the reflected image by an angle « according to
the laws of optics and by this a displacement of As of the imaged fringe system on the target in the distance / from the

M 2 enlarged
camera pixels

[ l "
I
. i
! I > a) 1AZ 1 b)

Fig. 2. Evaluation model: a) geometrical relations of fringe displacement, b) gradient and displacement angle

object. The deflection is caused by a local gradient of the surface Aa/2 — the same as above — which is given by the
change of height Az between two neighbored points of the surface in a distance of x.,,. The relations between the
geometrical quantities are given by:

Xii
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As

tana = — (1)
/

a Az
tan —=—— (2)

'xcam
and: Az = Excam 3)

21

In this equation x.,,, - the size of an “object point” on the target - is given by the linear dimension of the object divided
by the pixel number. The distance 1 is a measurable parameter of the set-up. The displacement of the fringe system — or
the regarded part of it — has to be determined by image processing. Since the displacement shifts the fringe system by
parts of the period the local phase of the fringes must be measured. For this, phase shifting technique is the state of the
art [5]. In order to evaluate the minimum phase shift to be resolved in a given set-up one has to take into account the
imaging system, Fig.3. The distance 1 from the camera to the object is the same as the distance from the monitor to the
object assuming that the camera is fixed on the monitor or close to it. It can be derived by the geometrical relations:

| Je | > -
Fig. 3. Geometrical model of the imaging: the circle of confusion has identical aperture size in double focus distance
As A A
222 o as=P22 )
P 27 2r
with  As: smallest displacement to be measured P:  smallest possible period of the fringe system
Ag:. smallest phase change to be measured 2 m: full fringe angle

The geometry of the set-up yields the equality d = P, Fig.3. With the focal length f'and the f-number & the size of d is

f
d =% 5
k &)
Equ.(5) together with Equ.(4) leads to
As = i% (6)
k2rm
Combining Equ.(6) with Equ.(3) results in
= 'xcam i L % (7)
[ 2k 2

Xeam 18 the distance between two neighbored object points; f// is the reduction of the object size by the imaging. The
product of x.,, and the reduction is the distance of two neighbored points on the target which is the size of a camera
pixel. Ap/2m is the smallest resolvable phase change. Taking these relations into account results in equation for the
height resolution Az as a function of the camera pixel size pixel, the aperture £ and the phase resolution A@/27:

: 1 Agp
Az = pivel — 22 8
P o X ®)

There are three parameters in this equation that influence the resolution:

xiii
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- The camera pixel size pixel is given by the available targets and is approximately 10 pm for a common camera.

- The aperture & of the imaging objective which is close to 10. This value cannot be extended very much since a smaller
aperture yields less light and by this more noise in the camera signal.

- The resolvable phase change which is normally expected to be 1/100 in phase shifting. However, this value can be
improved up to about 1/1000.

Inserting the following values: 4z=10 um, k=16, Ap=27/1000 Equ.(8) results in the height resolution of 4z=0.63 nm
2.3 Hierarchical Phase Shifting

Phase shifting is the state-of-the-art method to measure the phase of a fringe with high resolution. The method applies
sequential fringe systems with different periods or spatial frequencies. The largest period is adapted to the requirement of
unambiguity; the smallest period is given to the possible resolution of the imaging system. In common the period from
one fringe system is divided by a factor of 2 by simplicity. However, this is not the optimum as shown by Osten [8]: The
next smaller period must be chosen with regard to the noise. Taking this into account the spatial frequency may be
increased by a factor @ between two sequential fringe systems, Fig.4. The evaluation of the phase by fringe systems of

pmod 2z +noise  (a-@)mod2z +noise  (a’-p)mod 27 +noise

a) b) <)

Fig. 4. Sequential fringes system: a) fundamental spatial frequency, b) a times larger spatial frequency than a), ¢) a * a larger
spatial than a)

according to Fig.4a and Fig.4b results in

. noise
pmod27x +noise = ¢@mod2x + 9)
a
Combining this result with the fringe system according to Fig.4c results in
. noise
pmod2r + noise = @mod2r +—; 9)
a

This means that any additional fringe system in this sequence reduces the noise by a factor of a. Therefore highly
resolved phase measurements can be achieved.

2.4 Resolution of the FRT Applied to a Coated Mirror

The surface of a coated mirror has been investigated in comparison with the FRT, with a commercial grating interfero-
meter, and with a tactile coordinate measurement system, Fig.5a. The first step was to determine the shape of the whole

50 mm
AL+MgF: l
a) c) d)

Fig. 5. Flat Al-mirror, MgF, coated: a) Photo, shape measured a) by prating interferometer with range 21.4 um, c) by FRT
with range 18.8 pm, d) color scale

near

.b)

Xiv
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mirror by means of a commercial grating interferometer (by Zygo), Fig.5b) and by the fringe reflection technique,
Fig.5c. The measurements showed a nearly cylindrical shape with a diagonal “hill” in the middle. The peak-to-valley
value of the contour is about 20 um. In a next step the first and second order components of the shape were removed by
subtracting fitted polynomials. This yields the fine structure with peak-to-valley values of 15 nm for the FRT results,
Fig. 6b. The grating interferometer is not able to reach the same resolution by physical reasons of the method, Fig 6a.

near

»
EEEEEEEEERER

Fig. 6. Flat Al-mirror, MgF, coated, third order shape components: a) grating interferometer, b) FRT

The results of the FRT should be compared to the results achieved with the tactile coordinate measurement machine
Tencor P15 in the marked part of the mirror, Fig. 6b. The marked part of the mirror was investigated with the tactile
method (Fig. 7a) and compared to the FRT result, Fig. 7b. The whole range of the surface structure is 11 nm. This proofs
that the resolution is below 1 nm. It shall be pointed out that the FRT measurement was achieved with the original data
for whole the mirror area. In conclusion: FRT is a robust shape measurement method with a resolution of better than
1 nm and a dynamic range of more than 1:10,000.

e [\

b)
far near

Fig. 7. Flat Al-mirror, MgF, coated, fine structure of the shape: a) tactile, b) FRT

3. EXAMPLES OF APPLICATION
3.1 Polished Freeform Lens

Spherical lenses are tested by standard interferometry available as commercial systems with outstanding performance.
However, a problem arises when the surface has a freeform shape like those in varifocal lenses [9], Fig. 8a. The use of
adapted reference waves for the interferometric comparison is nearly impossible, especially in an industrial environment.
An additional difficulty is the required high dynamic range of the measurement since over a height difference of some
millimeter a resolution of less than one micrometer is demanded. The fringe reflection technique (FRT) can be adapted
to this problem in an elegant way. The set-up is a standard one with a monitor displaying sinusoidal fringes, a CCD
camera mounted close to the monitor, and with a computer for the image processing. As mentioned above, the first
results out of the measurement are the surface gradients. The first derivative of the gradient is the curvature which is
equal to the optical power, which is changing for a varifocal lens over the surface, Fig. 8b. The gradient field can be
integrated to achieve the surface shape. Interesting is again the fine structure of the shape which can be evaluated by
subtracting fitted polynomials, Fig. 8c. In this case the peak-to valley values are in the higher nanometer range.
However, the measured fine structure clearly demonstrates some properties of the polishing process: One can see the
relief of the polishing tool and by this any deviation from the symmetry. More interesting is the effect of the process to
build a “mountain”-like structure in the middle of the lens. Furthermore, the counter-measures to this effect deliver a
smaller mountain with a grove around. The achieved resolution of some ten nanometers is sufficient in this case.

XV
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+25.1
konkav

(konvex)
+8.7

a)
Fig. 8. Freeform lens, plastic: a) photo, b) curvature = optical power, c) scale

3.2 Flat Silicon Mirror

(nah) C)

High precision metal mirrors with specular surfaces are manufactured today by fly cutting diamond turning [10]. This
production method allows to generate flat or spherical surfaces with deviations of a few nanometer compared to the ideal
(mathematical) surface. FRT matches the control requirements of such surfaces, too. A flat silicon mirror shall be an
example for testing such objects, Fig. 9a. The set-up is comparable to the one described above. It was possible to
measure the fine structure directly in this case. The results of the commercial Fizeau interferometer showed a fine
structure with peak-to-valley values of 30 nm, Fig. 9b. This is less than the FRT determined, Fig. 9c. The difference can
be explained by the limited lateral resolution of the Fizeau interferometer functioning as a low pass filter. This cuts the
high peaks and the deep groves of the structure. However, the FRT measurement delivers much more information if the
different components are extracted, Fig. 10. One component are the traces of the cutting diamond with peak-to-valley
values up to 20 nm, the other significant component is the vibration of the diamond after hitting the substrate with values
up to 10 nm. Then there is a random component in the range of 16 nm.

— :
;?égé; o) ! . near
. Ay 2 ‘' : > s B ;

©)

0nm_______“ULIGEEEENOnm L0 nm
0 nm 2 1 nm b 6 nm

Fig. 10. Flat mirror (Si), fine structure: a) cutting traces b) vibrations of the tool, ¢) remaining random structure

XVi
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3.3 Internal disturbance of a Lacquer Coating

The investigation of a lacquer coating on a car door is an example for non specular reflecting surfaces with scattered
light components, Fig. 11a. The reflection of the room ceiling light is influenced by different components of the surface
structure: overall shape, orange peel effect, local defects, micro structure. FRT was applied to investigate the contribu-
tion of the each layer of the coating onto the final structure of the surface. The measurements were performed with a set-
up comparable to the one that was used for the car window. The results at the final layer — visible for the customer — are
an excellent demonstration for the high dynamic range of the FRT in one acquisition of the data: The shape of the shown
area of the door has a height range of 1.8 mm, Fig. 11b. The processing of the data by means of subtracting fitted
polynomials unfolded an interesting detail: Before the first layer someone has marked a certain point, Fig. 11c. This
marking could not be recognized by bare eye since the peak-to-valley height was less than 10 um and thus below the
values of the orange peel effect. Taking into account that the resolution is better than 1/10 of the range the dynamic range
of the FRT can be calculated to be better than 1/10,000 of the original captured data.

a) far )

Fig. 11. Lacquer: a) photo, b) shape with scale, ¢) FRT, both with scale

4. SUMMARY AND FUTURE WORK

Shape measurements with a resolution down into the nanometer range are getting an increasing importance. The fringe
reflection technique is an appropriate method to fulfill the requirements of scientific and industrial demands on a robust
and fast method with a resolution in the nanometer regime and with an extraordinary large dynamic range. The method is
based on the imaging of a sinusoidal fringe system via the object surface under investigation. This implies that the
surface has to be partly reflective, at least. The common set-up consist of a monitor to display the sinusoidal fringe
system, the object, a CCD camera mounted close to the monitor, and an image processing and control software. The
evaluation of the imaged fringe system is performed using the phase shifting method. In order to speed-up the
measurement the periods of the sequential fringe systems are chosen in a hierarchical way and not as most common in a
binary sequence.

The gradient field of the tested surface changes the fringe system. In the simplest case of real flat mirror without any
structure the change would be a deflection of the image with a displacement of the fringe system on the target. More
complex surfaces deform the fringe system according to the gradient field of the shape. The evaluation of the displace-
ment field is derived on the base of geometrical relations and optical laws. The resulting equation yielded that the
resolution depends on three quantities: the pixel size of the camera, the f-number of the object and resolution of the
measured fringe phase. The choice of reasonable parameters results in an achievable height resolution of less than 1 nm.
This has been proven with a flat coated mirror.

Three examples demonstrated the versatility of the fringe reflection technique:

- The first example was the measurement of the shape of a freeform lens for varifocal glasses. This object is hard to be
tested by standard interferometric methods since it is highly difficult to generate the reference wave. In this case a
grating interferometer served as reference. The peak-to-valley values of the height were nearly 10 mm. The fine
structure of the shape could be extracted out of the original shape data. This fine structure with peak-to-valley values
in the nanometer regime showed properties of the polishing especially a peak in the middle with a surrounding grove.

- The second example was the measurement of the shape of a flat silicon mirror. It was produced by fly cutting diamond
turning being the most precise technique for specular surfaces. The evaluation of the fine structure of the shape
showed three different components: the traces of the cutting diamond, vibrations of the tool introduced by the
interaction with the work piece after the first contact, and a random part due to several reasons. The range of the peak-
to-valley values were below 20 nm with a resolution better than 1 nm.
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- The third example was the investigation of the lacquer coating of a car door. The fringe reflection method enabled the
determination of each layer of the coating onto the final orange peel effect of the surface. On the overall shape with a
height of about 2 mm a fine structure could be extracted with height values in the upper and a resolution in the lower
nanometer range. The evaluation of this component unfolded a mark drawn on the uncoated surface by a coworker.
Although the maximum height of this mark was in the range of micrometer it could not be seen by the naked eye since
the orange peel effect hired it.

The fringe reflection technique has some remarkable properties demonstrated by the examples: The resolution can be

below one nanometer, the dynamic range of a measurement is higher than 1:10,000, and the resolution does not depend

on the size of the object. Beside this it has to be pointed out that the technique applies white light and needs no protection
against environmental disturbances.

Future work will be carried out on large spherical mirrors used e.g. in telescopes or for sun farms in solar energy plants.
Another challenging task will be the application to dynamic objects, e.g. the behaviour of liquid surfaces or the
interaction of biological species with a liquid environment.
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