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ABSTRACT

We present our recent theoretical studies of surface plasmon polariton analogues of the Goos–Hänchen effect and
of Young’s double-slit experiment.

1. INTRODUCTION

In recent years analogues of optical effects originally associated with volume electromagnetic waves have begun
to be studied in the context of surface plasmon polaritons. These include negative refraction,1, 2 the Talbot
effect,3, 4 cloaking,5 lasing,6, 7 and Young’s double-slit experiment.8 In this paper we present our recent
studies of some of these effects for surface structures that differ from those considered in Refs.1, 8 and by different
approaches as well, and present treatments of some new effects. The effects we consider here are surface plasmon
polariton analogues of the Goos–Hänchen effect and of Young’s double-slit experiment. A discussion of the
results obtained, and the conclusions that can be drawn from them, ends this paper.

2. THE GOOS–HÄNCHEN EFFECT

When an electromagnetic beam of finite cross section is incident from an optically more dense medium on its
planar interface with an optically less dense medium, and the polar angle of incidence is greater than the critical
angle for total internal reflection, the reflected beam undergoes a lateral displacement along the interface, as if it
has been reflected from a plane in the optically less dense medium parallel to the physical interface. This lateral
displacement of the reflected beam is the Goos–Hänchen effect.9

In this section we show that a surface plasmon polariton beam can display a Goos–Hänchen effect.

The system we consider consists of vacuum in the region x3 > 0. The region x1 < 0, x3 < 0 is filled with a
metal whose dielectric function is ε1(ω), while the region x1 > 0, x3 < 0 is filled with a metal whose dielectric
function is ε2(ω) (Fig. 1). The planar interface x3 = 0 between vacuum and each of the metals supports a
surface plasmon polariton of frequency ω.

We assume initially that a surface plasmon polariton of this frequency is incident from the region x1 < 0 on the
interface x1 = 0 between the two metals. We determine the electromagnetic field of the surface plasmon polariton

Figure 2.1. The structure studied in Section 2.
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reflected from this interface back into the region x1 < 0 by the use of an impedance boundary condition10 on
the surface x3 = 0. We write this boundary condition in the form (i, j = 1, 2)

JE(x‖|ω)i = K
(0)
ij (x‖|ω)JH(x‖|ω)j , (2.1)

where x‖ = (x1, x2, 0) and summation over repeated subscripts is assumed. The vectors JE(x‖|ω) and JH(x‖|ω)
are defined by JE(x‖|ω) = x̂3×E>(x|ω)|x3=0 and JH(x‖|ω) = x̂3×H>(x|ω)|x3=0, where E>(x|ω) (H>(x|ω)) is
the total electric (magnetic) field in the vacuum region x3 > 0, and a caret over a vector denotes a unit vector.

The only nonzero elements of the surface impedance tensor
↔
K

(0)

(x‖|ω) are

K
(0)
12 (x‖|ω) = κ1(ω) + [κ2(ω) − κ1(ω)]S(x‖),

= −K
(0)
21 (x‖|ω), (2.2)

where

S(x‖) = θ(x1), (2.3)

θ(x) is the Heaviside unit step function, and κj(ω) = i/(−εj(ω))
1
2 .

The total electric field in the vacuum E>(x|ω) can be written as

E>(x|ω) = ê>
p (k‖) exp[ik‖(ω) · x‖ − β0(k‖)x3]

+
∫

d2q‖
(2π)2

exp[iq‖ · x‖ − β0(q‖)x3]

{
ê>

p (q‖)
A>

‖ (q‖)

β0(q‖) + i(ω/c)κ1(ω)
+ ê>

s (q‖)
A>

⊥(q‖)
(ω/c) − iκ1(ω)β0(q‖)

}
, (2.4)

where

ê>
p (q‖) = (c/ω)

[
iq̂‖β0(q‖) − x̂3q‖

]
, (2.5a)

ê>
s (q‖) = (x̂3 × q̂‖), (2.5b)

and β0(q‖) = [q2
‖− (ω/c)2]

1
2 , with Reβ0(q‖) > 0, Imβ0(q‖) < 0. A time dependence exp(−iωt) has been assumed

for this field, but has not been indicated explicitly. The coefficients A‖(q‖) and A⊥(q‖) are the amplitudes of
the p− and s−polarized components of the scattered field with respect to the plane of scattering defined by the
vectors q̂‖ and x̂3.

The first term on the right-hand side of each of Eqs. (2.4) gives the field of the incident surface plasmon
polariton. The vector k‖(ω) is given by k‖(ω) = k‖(ω) (cos θ, sin θ, 0), where k‖(ω) = (ω/c)[1 − 1/ε1(ω)]

1
2 is the

wavenumber of the surface plasmon polariton of frequency ω, in the impedance approximation, at the planar
interface between vacuum and a metal whose dielectric function is ε1(ω). It is the solution of the dispersion
relation

β0(k‖(ω)) + i(ω/c)κ1(ω) = 0. (2.6)

The angle θ is its angle of incidence, measured counterclockwise from the negative x1 axis, and the function
β0(ω) is β0(k‖(ω)) = (ω/c)(−ε1(ω))−

1
2 .

The magnetic field H>(x|ω) is obtained from Eq. (2.4) with the use of the relation H>(x|ω) = −i(c/ω)∇×
E>(x|ω).
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When the expressions for E>(x|ω) and H>(x|ω) are substituted into Eqs. (2.1) and (2.2), we obtain a pair
of coupled integral equations for the scattering amplitudes A‖(q‖) and A⊥(q‖) that can be written in the forms

A‖(p‖) + i
ω

c
[κ2(ω) − κ1(ω)]

∫
d2q‖
(2π)2

Ŝ(p‖ − q‖)

{
(p̂‖ · q̂‖)

A‖(q‖)
β0(q‖) + i(ω/c)κ1(ω)

−i(p̂‖ × q̂‖)3
c

ω
β0(q‖)

A⊥(q‖)
(ω/c) − iκ1(ω)β0(q‖)

}
= −i

ω

c
[κ2(ω) − κ1(ω)]Ŝ(p‖ − k‖)(p̂‖ · k̂‖) (2.7a)

A⊥(p‖) − ω

c
[κ2(ω) − κ1(ω)]

∫
d2q‖
(2π)2

Ŝ(p‖ − q‖)

{
(p̂‖ × q̂‖)3

A‖(q‖)
β0(q‖) + i(ω/c)κ1(ω)

+i(p̂‖ · q̂‖)
c

ω
β0(q‖)

A⊥(q‖)
(ω/c) − iκ1(ω)β0(q‖)

}
=

ω

c
[κ2(ω) − κ1(ω)]Ŝ(p‖ − k‖)(p̂‖ × k̂‖)3, (2.7b)

where

Ŝ(Q‖) =
∫

d2x‖S(x‖) exp(−iQ‖ · x‖). (2.8)

For the function S(x‖) given by Eq. (2.3) we have

Ŝ(Q‖) =
2πδ(Q2)

i(Q1 − iη)
, (2.9)

where η is a positive infinitesimal.

The translational invariance of our system in the x2 direction requires that the amplitudes A‖,⊥(q‖) have the
forms

A‖,⊥(q‖) = 2πδ(q2 − k2)a‖,⊥(q1). (2.10)

The amplitudes a‖,⊥(q1) satisfy the equations

a‖(p1) + i
ω

c
[κ2(ω) − κ1(ω)]

∞∫

−∞

dq1

2πi

1
p1 − q1 − iη

{
(p̂‖ · q̂‖)

a‖(q1)
β0(q‖) + i(ω/c)κ1(ω)

−i(p̂‖ × q̂‖)3
c

ω
β0(q‖)

a⊥(q1)
(ω/c) − iκ1(ω)β0(q‖)

}
= −i

ω

c
[κ2(ω) − κ1(ω)]

(p̂‖ · k̂‖)
i(p1 − k1 − iη)

(2.11a)

a⊥(p1) − ω

c
[κ2(ω) − κ1(ω)]

∞∫

−∞

dq1

2πi

1
p1 − q1 − iη

{
(p̂‖ × q̂‖)3

a‖(q1)
β0(q‖) + i(ω/c)κ1(ω)

+i(p̂‖ · q̂‖)
c

ω
β0(q‖)

a⊥(q1)
(ω/c) − iκ1(ω)β0(q‖)

}
=

ω

c
[κ2(ω) − κ1(ω)]

(p̂‖ × k̂‖)3
i(p1 − k1 − iη)

. (2.11b)

In writing Eqs. (2.11) we have simplified the notation by using the vectors p‖, q‖, and k‖. However, it must
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be noted that the 2 component of each of these vectors is now k2, so that p‖ = (p1, k2, 0), q‖ = (q1, k2, 0), and
k‖ = (k1, k2, 0). Therefore q‖ = (q2

1 + k2
2)

1
2 in these equations.

The pair of equations (2.11) was solved numerically. The infinite range of integration was replaced by the
finite range (−q∞, q∞). The resulting integrals were converted into sums by the use of an N−point extended
midpoint method. The variable p1 was given the values of the abscissas used in the evaluation of the integrals.
A square 2N × 2N supermatrix equation for the values of a‖(q1) and a⊥(q1) at the values of these abscissas was
produced, which was solved by a standard linear equation solver algorithm. The convergence of the solution was
monitored by increasing q∞ and N systematically until the solution did not change upon further increases of
these parameters.

The surface plasmon polariton reflected from the interface x1 = 0 back into the region x1 < 0 of the surface
x3 = 0 is p polarized. The p−polarized component of the electric field scattered into the vacuum region x3 > 0
is given by the first term in the integral on the right-hand side of Eq. (2.4). With the use of Eqs. (2.10) this
field can be written as

E>(x|ω)sc,p−pol =
c

ω

∞∫

−∞

dq1

2π

[
iβ0(q‖)q̂1, iβ0(q‖)k̂2,−q‖

]

× a‖(q1)
β0(q‖) + i(ω/c)κ1(ω)

exp[iq1x1 + ik2x2 − β0(q‖)x3]. (2.12)

We are still using the convention that the 2 component of each vector is k2. The contribution to the field (2.12)
from the reflected surface plasmon polariton is given by the residue of the integrand at the simple poles it has
when β0(

√
q2
1 + k2

2) + i(ω/c)κ1(ω) = 0. In fact, the solutions of this equation are q1 = ±k1(ω), where k1(ω) is
the 1 component of the vector k‖(ω). Since we are interested in this field in the region x1 < 0, we need the
residue at the pole that lies in the lower half of the complex q1 plane, namely q1 = −k1(ω). (We assume that
ε1(ω) has an infinitesimal positive imaginary part to aid this determination.) It can be shown that a‖(q1) has no
pole in the lower half of the complex q1 plane. On evaluating the residue at this pole we obtain for the electric
field of the reflected surface plasmon polariton in the region x1 < 0, x3 > 0

E>(x|ω)ref,spp = r(k1, ω)
c

ω
[−iβ0(ω)k̂1, iβ0(ω)k̂2,−k‖] exp[−ik1x1 + ik2x2 − β0(ω)x3], (2.13a)

where the reflection amplitude r(k1, ω) is

r(k1, ω) =
ω

c
κ1(ω)

a‖(−k1)
k1

. (2.13b)

The critical angle θc for total internal reflection of a surface plasmon polariton incident from the region x1 < 0
(ε1(ω)) on the interface x1 = 0 is obtained from the condition k2(ω) = k‖(ω) sin θc = p‖(ω), where p‖(ω) =
(ω/c)[1 − 1/ε2(ω)]

1
2 is the wavenumber, in the impedance approximation, of the surface plasmon polariton of

frequency ω at the planar interface between vacuum and a metal whose dielectric function is ε2(ω). Thus we
find that

sin θc =
p‖(ω)
k‖(ω)

. (2.14)

The existence of this angle clearly requires that p‖(ω) < k‖(ω) or, equivalently, that |ε1(ω)| < |ε2(ω)| (recall that
εj(ω), j = 1, 2, must be negative in order that the corresponding surface plasmon polariton exist).

The result given by Eq. (2.13a) has been obtained on the basis of the assumption that the incident surface
plasmon polariton has the form of an evanescent plane wave whose angle of incidence measured counterclockwise
from the negative x1 axis is θ. However, observation of the Goos–Hänchen effect requires that the incident
surface plasmon polariton have the form of a beam of finite width in the plane x3 = 0. The reflected surface
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Figure 2.2. (a) A color-level plot of the intensity distribution of a surface plasmon polariton beam incident at an angle
of θ0 = 78◦ from a gold surface on its interface x1 = 0 with an aluminum surface. (b) A color-level plot of the intensity
distribution of a surface plasmon polariton beam reflected from the interface x1 = 0 of a gold surface with an aluminum
surface. The horizontal arrows indicate the position of the maximum intensity of each beam along the interface x1 = 0.

plasmon polariton will then also have the form of a beam of finite width in the plane x3 = 0. To obtain such an
incident and scattered field we calculate the right-hand side of Eq. (2.13a) as a function of θ for −π/2 ≤ θ ≤ π/2,
multiply the result by (k‖w/2

√
π) exp[−(k‖w/2)2(θ − θ0)2], and integrate the product with respect to θ in the

interval −π/2 ≤ θ ≤ π/2. In the limit that (k‖w/2) � 1, the resulting incident surface plasmon polariton has
the form

E>(x|ω)inc,spp
∼= c

ω

[
iβ0(ω) cos θ0, iβ0(ω) sin θ0,−k‖

]
exp

[
ik‖(x1 cos θ0 + x2 sin θ0)

]
exp[−β0(ω)x3]

× exp
[
− (−x1 sin θ0 + x2 cos θ0)2

w2

]
, (2.15)

which is recognized as the electric field of an incident surface plasmon polariton Gaussian beam whose angle of
incidence measured counterclockwise from the negative x1 axis is θ0, and whose 1/e half width in the direction
normal to its direction of propagation is w. The electric field of the reflected surface plasmon polariton is

E>(x|ω)ref,spp
∼=

π/2∫

−π/2

dθ
k‖w
2
√

π
exp

[
−

(
k‖w
2

)2

(θ − θ0)2
]

r(k‖ cos θ, ω)
c

ω

[−iβ0(ω) cos θ, iβ0(ω) sin θ,−k‖
]

× exp
[
ik‖(−x1 cos θ + x2 sin θ) − β0(ω)x3

]
, (2.16)

an integral that we evaluate numerically.

We now turn to some results obtained by means of the preceding analysis.

We assume that the region x1 < 0, x3 < 0 is gold, while the region x1 > 0, x3 < 0 is aluminum. A surface
plasmon polariton beam of 1/e halfwidth w is incident from the region x1 < 0 on the interface x1 = 0. Its
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Figure 2.3. The lateral displacement of the reflected surface plasmon polariton beam as a function of the angle of
incidence θ0 for several values of the 1/e half width of the incident surface plasmon polariton beam.

frequency ω corresponds to a vacuum wavelength of λ = 632.8 nm. The dielectric function of gold at that
frequency is ε1(ω) = −11.82, while the dielectric function of aluminum at this frequency is ε2(ω) = −64.07. The
critical angle for total internal reflection in this case is θc = 75.39◦.

In Fig. 2.2(a) we present a color-level plot of the intensity distribution in the region x1 < 0 and x3 = 0.1(c/ω)
of the incident surface plasmon polariton beam, whose 1/e half width is w = 16(c/ω), and whose angle of incidence
is θ0 = 78◦. In Fig. 2.2(b) we present a color-level plot of the intensity distribution in the region x1 < 0 and
x3 = 0.1(c/ω) of the reflected surface plasmon polariton beam. The horizontal arrows in these two figures
indicate the position of the center of each beam along the interface x1 = 0 between the two metals. It is seen
that the reflected beam has its center displaced in the positive x2 direction from the center of the incident beam
by a distance dshift

∼= 61(c/ω).

In Fig. 2.3 we plot the lateral shift of the reflected beam as a function of the angle of incidence θ0 for three
different values of the 1/e half width w of the incident surface plasmon polariton beam. The system for which
these results were calculated is the same as the one for which Fig. 2.2 was obtained. It is seen that a lateral
displacement of the reflected beam occurs even when the angle of incidence θ0 is smaller than the critical angle
for total internal reflection θc = 75.39◦. This is due to the fact that the incident beam is a superposition of
plane waves with a Gaussian distribution of their angles of incidence centered at θ0. Because of the finite width
of this beam, even if θ0 is smaller than θc some portion of it is a superposition of plane waves whose angles of
incidence are greater than θc, and it is this portion that produces the lateral shift of the reflected beam. This
shift decreases as θ0 decreases from θc because the portion of the incident beam formed from the plane waves
whose angles of incidence exceed θc decreases rapidly due to the Gaussian distribution of the angles of incidence.

The lateral shifts of the reflected surface plasmon polariton beam calculated here for the gold–aluminum
interface appear to be large enough to be observable.

3. YOUNG’S DOUBLE-SLIT EXPERIMENT

The interference fringes observed by Thomas Young11 in the intensity distribution of light transmitted through
a pair of nearby pinholes in an opaque screen was the first experimental evidence for the wave nature of light.
The same kind of interference pattern is also obtained when the pinholes of Young’s experiment are replaced by
narrow slits.12

In recent theoretical and experimental work Zia and Brongersma8 have studied the surface plasmon polariton
analogue of Young’s double slit experiment. In their experiment the slits were represented by two metal stripe
waveguides that protruded from an extended metal film region called the launchpad, and terminated at another
metal film region called the termination pad. This metal structure was deposited on a glass substrate. A
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Figure 3.1. The structure studied in Section 3.

photon scanning tunneling microscope (PSTM) was used to determine the local field intensity under its tip in
the termination pad. The distribution of this intensity closely resembled the diffraction and interference pattern
of Young’s double–slit experiment, and was in good agreement with theoretical results obtained by means of the
authors’ dielectric waveguide model.13

In this section we reconsider the theory of the surface plasmon polariton analogue of Young’s double-slit
experiment. Our approach is based on the impedance boundary condition used in Section 2.

The structure we study consists of vacuum in the region x3 > 0. The region x3 < 0 is filled with a metal
whose dielectric function is ε1(ω), except in the regions |x1| < L/2, |x2| > d, and |x1| < L/2, |x2| < d−Δ, which
are filled with a dielectric whose (real, positive) dielectric constant is ε2(ω) (Fig. 3.1). Note that these portions
of the surface x3 = 0 do not support surface plasmon polaritons. Thus the regions |x1| < L/2, d− Δ < |x2| < d
are slits of length L and width Δ on the surface x3 = 0.

We assume that a surface plasmon polariton of frequency ω in the form of a plane wave is incident on the slits
from the region x1 < −L/2 on the surface x3 = 0. Our interest is in the surface plasmon polariton transmitted
into the region x1 > L/2 of this surface.

We calculate the transmission of the incident surface plasmon polariton on the basis of the impedance bound-
ary condition (2.1)-(2.2), where now

S(x‖) = θ(L/2 − |x1|) [θ(|x2| − d) + θ(d − Δ − |x2|)] . (3.1)

The total electric field in the vacuum is again given by Eq. (2.4), and the amplitudes A‖(q‖) and A⊥(q‖) again
satisfy Eqs. (2.7), where now

Ŝ(Q‖) = 2Lsinc(Q1L/2) [πδ(Q2) − dsinc(Q2d) + (d − Δ)sinc(Q2(d − Δ))] , (3.2)

where sincx = sin x/x.

Equations (2.7) together with Eq. (3.2) were solved numerically by a two-dimensional extension of the method
described in Section 2.

The contribution to the electric component of the scattered field in the vacuum region from the surface
plasmon polariton in the region x1 > L/2 is given by the residue at the pole of the first term in the integrand

Proc. of SPIE Vol. 7467  74670H-7



0

0

0

0

-60 -40 -20  0  20  40  60

|E
(x

|
)|

2
x2/(c/ )

1

1

1

1

x1 = 40 /(c/ )

x1 = 127 /(c/ )

x1 = 213 /(c/ )

x1 = 300 /(c/ )

Figure 3.2. (a) A color-level plot of the intensity distribution of the surface plasmon polaritons transmitted through a
pair of slits as a function of the distance from the exits of the slits. (b) Lateral cross sections of the intensity distribution
at increasing distances from the exits of the slits.

on the right-hand side of Eq. (2.4) at q‖ = k‖(ω). It can be written in the form

E>(x|ω)tr,spp = exp[−β0(ω)x3]

π/2∫

−π/2

dφq

2π
exp[ik‖(ω)x‖ cos(φq − φx)]

c

ω
[iβ0(ω) cosφq , iβ0(ω) sin φq,−k‖(ω)]

× ω

c
κ1(ω)A‖(k‖(ω) cosφq , k‖(ω) sin φq), (3.3)

where φq and φx are the azimuthal angles of the vectors q‖ and x‖, respectively, measured from the x1 axis. The
total contribution from surface plasmon polaritons to the electric field in the vacuum in the region x1 > L/2
is given by the sum of the expression given by Eq. (3.3) and the electric field of the incident surafce plasmon
polariton, which is given by the first term on the right-hand side of Eq. (2.4). It is this total field that is used in
calculating the intensity distribution of the transmitted surface plasmon polariton field in the region x1 > L/2.

Some preliminary results obtained from the preceding theory are presented in Fig 3.2. In Fig. 3.2(a) we
present a color-level plot of the intensity distribution in this region when a surface plasmon polariton whose
frequency ω = 2πc/λ corresponds to a vacuum wavelength λ = 632.8nm has been transmitted through two slits
of width Δ = 2μm that are separated by d = 2μm. The dielectric function ε1(ω) = −17.2, while the dielectric
function ε2(ω) has been given the value ε2 = ∞. Thus the slits are assumed to have perfectly conducting walls.
The surface plasmon polariton beams emerging from the two slits spread with increasing distance from the exits
of the slits. When the diffracted surface waves overlap an interference pattern is produced, whose signature is a
central maximum. This is clearly seen in Fig. 3.2(b) where lateral cross sections of the intensity distribution at
increasing distances from the exits of the slits are plotted, and show the evolution of the two-peaked intensity
distribution close to the slits into a three-peaked distribution.
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4. DISCUSSION AND CONCLUSIONS

In this work we have shown that a surface plasmon polariton beam incident on a straight boundary between two
different metals with a common planar interface with vacuum produces a reflected surface plasmon polariton
beam that is shifted along the boundary when its angle of incidence is greater than the critical angle for total
internal reflection from that boundary. This is the analogue for surface plasmon polaritons of the Goos–Hänchen
effect for volume electromagnetic waves. This result was obtained by the use of an impedance boundary condition
at the vacuum–metal interface and a numerical solution of the integral equations for the amplitudes of the p− and
s−polarized components of the electric field scattered by the boundary that arise from the use of this boundary
condition.

The same approach was used to study the transmission of a surface plasmon polariton through a pair of slits
fabricated on a planar, metal surface. It was shown that the transmitted electromagnetic field has a contribution
from surface plasmon polaritons that has a distribution of intensity along a line perpendicular to the axes of
the slits that displays the same kinds of diffraction and interference fringes as are observed in the intensity
distribution of volume electromagnetic waves transmitted through a pair of nearby slits in an opaque screen.
This is the analogue for surface plasmon polaritons of Young’s double slit experiment.

Applications in which these properties of a surface plasmon can be exploited do not exist as yet. This
study, therefore, is intended to add to the catalogue of properties of these surface electromagnetic waves some
new ones, which might find their way into nanoscale devices some time in the future. They provide additional
evidence that surafce plasmon polaritons display the same diffraction and interference phenomena as do volume
electromagnetic waves.

The methods we have used in obtaining these results, namely the numerical solution of two-dimensional
integral equations, obtained through the use of impedance boundary conditions are well suited to the study of
the kinds of problems considered here. They can be useful in studies of properties of surface plasmon polaritons
on other kind of structured surfaces.
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