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Abstract

There are many good concepts that have been developed that collectively enable the achievement of
incredibly high levels of performance in current computers. In this paper, seven key concepts are
identified.

Keywords: Computer arithmetic, two's complement numbers, fast addition, Booth multiplication,
fast multiplication, SRT division, Newton-Raphson division, IEEE floating point format.

1. Introduction

Modem computers provide exceptionally high levels of computational performance. While much
of the credit is due to the techniques of data manipulation (multi level cache memories, multiple
execution threads, etc.) much- of the credit belongs to the computational units and the arithmetic
algorithms that they implement. This paper presents a candidate selection of the seven most
significant developments of computer arithmetic. While few systems employ all seven, most
current systems employ most of them.

2. Two's Complement Number System

Three binary number systems (signlmagnitude, one's complement and two's complement) were
used for early computers. Actually each of these can be considered to be derivatives of
corresponding decimal number systems, i.e., sign/magnitude, nine's complement and ten's
complement, respectively. It has been suggested [1] that the ten's complement number system was
used to implement subtraction on Pascal's stylus operated adding machines which were constructed
starting in 1642.

In the two's complement fractional number system, the value of a number is the sum of n—i positive
binary fractional bits and a sign bit which has a weight of—i. The sign bit is 1 for negative
numbers and 0 for positive numbers.

n-2
A = —an_i + a 2in+1 (1)

i=O
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Table 1 shows the representation of thel6 numbers that comprise a four bit fractional two's
complement number system. Note that there is a single unique representation of 0 and that the
system is not symmetric (i.e., there is a negative number [—1] for which there is no positive
equivalent [since the largest positive number is 7/8]).

Table 1. Four-bit Two's Complement Fractions.

VALUE REPRESENTATION VALUE REPRESENTATION
—1 1000 0 0000

—7/8 1001 1/8 0001
—3/4 1010 1/4 0010
—5/8 1011 3/8 0011
—1/2 1100 1/2 0100
—3/8 1101 5/8 0101
—1/4 1110 3/4 0110
—1/8 1111 7/8 0111

The two's complement system is attractive because addition and subtraction are simple to
implement. Subtraction (or addition of numbers of unlike sign) is performed by adding the two's
complement of the subtrahend (or the negative number) to the other number. Determining that
overflow occurred (which only happens when adding numbers of like sign is done by comparing the
carry into and the carry out from the most significant bit. Ifthe carries match (i.e., both 0 or both 1)
no overflow has occurred.

Two's complement numbers are negated by complementing all bits and adding a ONE to the least
significant bit position. For example, to form —3/8:

+3/8 0011
invert all bits = 1 1 0 0
addi 0001

1101 = —3/8

Check:
invert all bits = 0 0 1 0
addi 0001

0011 = +3/8

If a two's complement fractional number is reduced in size by truncation (i.e., deleting some
number of least significant bits), the resulting number is less than or equal to the original number.
This bias occurs because all low order bits (some of which are removed in the truncation process)
have positive weight. Thus if many truncated numbers are summed, there may be a significant error
due to the accumulation of sub LSB biases.

The two's complement number system is one of the wonders of computer arithmetic because it
simplifies addition and subtraction (which are the most frequent arithmetic operations).
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3. Carry Lookahead Addition

The baseline adder is a ripple carry adder which is implemented by concatenating n full adders. At
the k-th bit position, bits ak and bk of the operands A and B and the carry signal from the preceding
stage, ck, are used to generate the k-th bit of the sum, 5k and the carry to the next adder stage, ck+1.
This is called a ripple carry adder, since the carry signals "ripple" from the least significant bit
position to the most significant. Since most full adders have 2 gate delays from the carry in to the
cany out, an n-bit ripple carry adder requires slightly more than 2n gate delays to produce the most
significant sum bit.

The cany lookahead adder was developed by Weinberger and Smith in 1958 [2]. Here specialized
logic computes the canies in parallel. The carry lookahead adder uses an adder module (similar to
a full adder) for each bit position and lookahead modules, which compute carries for the adder
modules. The adder modules form i akbk which indicates that a cany is generated at that bit
position and Pk ak + bk which indicates that a carry in to that position will be propagated to the
output of that bit position.

ck+1 gk + pkck (2)

Extending the concept to subsequent stages:

ck+2 =
gk+1 + Pk+lCk+1

=
gk+1 + pk+1(gk + pkck)

=
gk+1 + pk+lgk + pk+lpkck (3)

ck+3 = gk+2 + pk+2ck+2

=
gk+2 + pk+2(gk+1 + pk+lgk + pk+lpkck)

= gk+2 + pk+2gk+1 + pk+2pk+lgk + pk+2pk+lpkck (4)

Although it would be possible to continue this process indefinitely, each additional stage increases
the fan-in of the logic gates. Four inputs (as required to implement Equation (4)) is frequently the
maximum number of inputs per gate for current technologies. To continue the process, block
generate and block propagate signals are defined over four bit blocks (stages k to k+3), gk-k+3 and

Pk-k+3 respectively:

gk-k+3 = gk+3 + pk+3gk+2 + Pk+3Pk+2gk+1 + Pk+3Pk+2Pk+lgk (5)
and

Pk-k+3 = Pk+3Pk+2Pk+lPk (6)

Equation (2) can be expressed in terms of the four bit block generate and propagate signals:

ck+4 = gk-k+3 + pkk+3ck (7)
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Thus the carry out from a 4-bit wide block can be computed in only four gate delays (the first to
compute Pj and gj for i = k through k+3, the second to evaluate Pk-k+3 the second and third to
evaluate gk-k+3, and the third and fourth to evaluate ck+4 using Equation (7)).

A 16-bit cany lookahead adder is shown on Figure 1.

In general the delay of an n-bit carry lookahead adder using r bit lookahead blocks is

DELAYCLA 2 + 4 rlogr ni (8)

The complexity of an n bit carry lookahead adder is about 1/3 greater than a ripple carry adder.

The cany lookahead adder is one of the wonders of computer arithmetic because it performs
addition in time proportional to the logarithm of the word size with only a modest increase in
complexity relative to the ripple carry adder.

4. Booth Multiplication

Prior to the development of the Booth algorithm multiplication of two's complement numbers
required a correction if the multiplicand is negative, a different correction if the multiplier is
negative, and both corrections if both the multiplicand and multiplier are negative [3]. Such data
dependent corrections must be accommodated by allowing time for them even in the more common
case of multiplying two positive numbers

4.1 The Booth Multiplier
The Booth algorithm [4] eliminates the data dependent correction steps. To multiply A B, the
product, P, is initially set to ZERO. Then, the bits of the multiplier, A, are examined in pairs of
adjacent bits starting with the least significant bit (i.e., ao a_i) and assuming a 0. Depending on
the two bits, actions are taken in accordance with Table 2:

Table 2. Booth Multiplication.

a OPERATION a1 OPERATION

0 0 P=P/2 1 0 P=(P—B)/2
0 1 P=(P+B)/2 1 1 P=P/2

The division by two is not performed on the last stage (i.e., when i =n—i). All of the divide by two
operations are simple arithmetic right shifts (i.e., the word is shifted right one position and the old
sign bit is repeated for the new sign bit), and overflows in the addition process are ignored. The
Booth multiplier requires n cycles to form the product of a pair of n bit numbers, where each cycle
consists of an n bit addition and a shift, an n-bit subtraction and a shift, or a shift without any other
arithmetic operation.
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Figure 1. 16-Bit Carry Lookahead Adder.

s7 a7 b7

s11 a11 b11

s15 a15 b15

P8-il

Proc. of SPIE Vol. 5559     5



In general the delay of an n-bit Booth multiplier using a carry lookahead adder is

DELAYBO0th =n (2 + 4 rlogr ni) (9)

4.2 The Modified Booth Multiplier
The radix-4 Modified Booth Multiplier described by MacSorley [5] uses n12 cycles where each
cycle examines three adjacent bits, adds or subtracts 0, B or 2 B and shifts two bits to the right.
Table 3 shows the operations as a function of the three bits a+i, a, and at_i. The radix-4 modified
Booth multiplier takes half the number of cycles as the original Booth multiplier although the
operations performed during a cycle are slightly more complex (since it is necessary to select one of
five possible addends instead of one of three). Extensions to higher radices that examine more than
three bits are possible, but generally not attractive because the additionlsubtraction operations
involve non-power oftwo multiples (such as 3, 5, etc.) ofB which raises the complexity.

Table 3. Radix-4 Modified Booth Multiplication.

aj+1 a ajl OPERATION aj+1 a OPERATION

0 0 0 P=P/4 1 0 0 P=(P—2B)/4
0 0 1 P=(P+B)/4 1 0 1 P=(P—B)14
0 1 0 P=(P+B)/4 1 1 0 P=(P—B)/4
0 1 1 P=(P+2B)/4 1 1 1 P=P14

In general the delay of an n-bit radix-4 modified Booth multiplier using a cany lookahead adder is

DELAYMOd Booth (2 + 4 rlogr nl)/2 (10)

The Booth multiplier and modified Booth multiplier are wonders of computer arithmetic because
they performs two's complement multiplication without requiring data dependent correction steps.
The modified Booth multiplier is especially attractive because it reduces the number of cycles by
50%.

5. Fast Multiplication

While the Booth and modified Booth multipliers achieved two's complement multiplication without
corrections, they are require time proportional to n Log n to multiply two n bit numbers if the
addition is done with a carry lookahead adder. A method for fast multiplication was developed by
Wallace [6] and refined by Dadda [7].

With this method, a three step process is used to multiply two numbers: (1) the bit products are
formed, (2) the bit product matrix is "reduced" to a two row matrix where the sum of the rows
equals the sum of the bit products, and (3) the two numbers are summed with a fast adder to
produce the product.
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The first step requires a single gate delay as all of the n2 bit products can be formed in parallel.

The second step is shown for a 6 by 6 Dadda multiplier on Figure 2. Although the matrix shown is
for unsigned operands, simple corrections (replacing some AND gates with NAND gates)
accommodate two's complement operands [8]. An input 6 by 6 matrix of dots (each dot represents
a bit product) is shown as Matrix 0. Columns having more than four dots (or that will grow to more
than four dots due to carries) are reduced by the use of half adders (each half adder takes in two
dots and outputs one in the same column and one in the next more significant column) and full
adders (each full adder takes in three dots from a column and outputs one in the same column and
one in the next more significant column) so that no column in Matrix 1 will have more than four
dots. Half adders are shown by a "crossed" line in the succeeding matrix and full adders are shown
by a line in the succeeding matrix. In each case the right most dot of the pair that are connected by
a line is in the colunm from which the inputs were taken in the preceding matrix for the adder. In
the succeeding steps reduction to Matrix 2 with no more than three dots per column, and finally
Matrix 3 with no more than two dots per column is performed.

The height of the matrices is determined by working back from the final (two row) matrix and
limiting the height of each matrix to the largest integer that is no more than 1 .5 times the height of
its successor. Each matrix is produced from its predecessor in one adder delay. Since the number
of matrices is logarithmically related to the number of rows in matrix 0 which is equal to the
number of bits in the words to be multiplied, the delay of the matrix reduction process is
proportional to log n.

The third step is to sum the two rows of the final matrix with a fast adder such as a cany lookahead
adder. This requires time proportional to log n.

Thus the total delay for the fast multiplier is the sum of a constant and two terms that are
proportional to log n giving a total delay that is proportional to the logarithm of the word size.

The modified Booth algorithm can be used as a first step to reduce the height of the initial matrix by
50%. This approach accommodates two's complement operands.

The fast multiplier is a wonder of computer arithmetic since it performs multiplication in time
proportional to the logarithm of the data word size..

6. SRT Division

Division is often implemented with a recurrence process that is similar to paper and pencil decimal
division. The basic equation is:

Pk+1 = r Pk — In-k-1 D (11)

Proc. of SPIE Vol. 5559     7



• . SS S S
• S S SS S

• S SS S S
Matrix 0

• S S S SS
• SS SS S

• S S S S S

S SS SS S S.////....
Matrix 1 • S S S S.//S..

.. S S• •//////• S SMatrix 2

SSSS SS S S

Matrix3 S////////• :
Figure 2. Unsigned 6 by 6 Dadda Multiplier.
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Where Pk the k-th partial dividend (initially P0 is the dividend), r is the radix (usually a power of
2), qj is the i-th quotient digit and D is the Divisor. Restoring and non-restoring division as used on
early computers is based on this process.

6.1 Binary SRT Division
The SRT division is a digit recurrent algorithm was developed independently by D. Sweeney of
IBM, J. E. Robertson [9] and T. D. Tocher [10] in approximately 1958. Binary (i.e., radix =2) SRT
division allows the quotient digits to be selected from {±1 , 0) . The divisor is restricted to the range
.5 D <1 . The digit selection and resulting partial remainder are given for the k-th iteration by the
relations in Table 4:

Table 4. Binary SRT Division.

Pk ! qn-k-1 k+1
If k � .5 qn-k-1

= 1 k+1 = 2 k D
If -.5 < k < .5 qn-k-1

= 0 k+1 2 k
If Pk � .5 qn-k-1

= - 1 k+1 = 2 Pk + D

Computing an n bit quotient with binary SRT division involves n evaluations of Equation (1 1).
Since each evaluation of Equation (1 1) requires one subtraction (implemented via addition in two's
complement), the quotient (in the {±1 , O} digit set) is obtained with n additions. A single additional
n-bit addition is required to convert the result to a two's complement number.

6.2 Radix-4 SRT Division
Radix-4 SRT division is similar to binary SRT division. Radix-4 SRT division algorithm uses
either a minimally redundant digit set of {±2, O} or the maximally redundant digit sets of {±3,

O} The operation of the algorithm is similar to the binary SRT algorithm except that Pk and
D are applied to a look up table or a Programmable Logic Array (PLA) to determine the quotient
digit. See the text by Ercegovac and Lang [1 1] for details of the quotient selection process.
Computing an n bit quotient with radix-4 SRT division involves n12 evaluations of Equation (1 1).
Since each evaluation of Equation (1 1) requires one subtraction (implemented via addition in two's
complement), the quotient (in the {±1, O} digit set) is obtained with n12 additions. A single
additional n-bit addition is required to convert the result to a two's complement number.

The SRT divider is a wonder of computer arithmetic since it is widely used to perform division in
current systems.

7. Newton-Raphson Division

A second division technique uses a form of Newton-Raphson iteration to develop a quadratically
convergent approximation to the reciprocal of the divisor which is then multiplied by the dividend
to produce the quotient. In systems which include a fast multiplier, this process is often faster than
conventional division [12].
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The Newton-Raphson division algorithm to compute Q = consists of three basic steps:

(1) Calculate a starting estimate of the reciprocal, R(O). Ifthe divisor, D, is normalized (i.e., 1/2 S D

< 1), then R(O) = 3 — 2 D exactly computes j at D = .5 and D = 1 and exhibits maximum error (of

approximately 0.17) at D = ji7 . AdjustingR(O) downward to by halfthe maximum error gives:

R(O)2.9152D (12)

This produces an initial estimate that is within about 0.087 of the correct value for all points in the
interval 1/2 D < 1.

(2) Compute more accurate estimates of the reciprocal by the following iterative procedure:

R(i+1) R(i) (2 —D R(i)) for: i = 0, 1, . . . , k (13)

(3) Compute the quotient by multiplying the dividend, N, times the estimate of the reciprocal of the
divisor.

Q=NR(k), (14)

With this algorithm, the error decreases quadratically, so that the number of correct bits in each
approximation in step 2 is roughly twice the number of correct bits on the previous iteration. Thus,

from a -bit initial approximation, two iterations produce a reciprocal estimate accurate to 14 bits,

four iterations produce a reciprocal estimate accurate to 56 bits, etc.

The efficiency of this process is dependent on the availability of a fast multiplier, since each
iteration of Equation (13) requires two multiplications and a subtraction. The complete process for
the initial estimate, three iterations, and the final quotient determination requires four subtraction
operations and seven multiplication operations to produce a 1 6-bit quotient. This is faster than a
conventional non-restoring divider if multiplication is roughly as fast as addition, which is often
true for systems which include hardware multipliers.

The Newton-Raphson divider is a wonder of computer arithmetic since it achieves quadratic
convergence, which is much faster for large date word sizes than digit recurrent methods.

8. IEEE Floating Point Format

A floating point number, A, consists of a significand (or mantissa), Sa, and an exponent, Ea. The
value of a number, A, is given by the equation:

ASart (15)
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Where: r is the radix (or base) of the number system. Use of the binary radix (i.e., r = 2) gives
maximum accuracy, but may require more frequent normalization than higher radices. Prior to the
widespread adoption of the IEEE standard format [13], there were a wide variety of different
floating point formats with varying radices, exponent sizes, significand sizes and normalization
schemes.

7.1 IEEE Single Precision Format
The IEEE Std. 754 single precision (32-bit) floating point format which is widely implemented, has
an 8-bit excess 127 integer exponent which ranges in value between —127 to 128. The two extreme
values serve as flags for special cases. The special cases are shown in Table 5. The significand
consists of one sign bit and a 24-bit magnitude mixed number (the binary point is to the right of the
most significant bit and is always a ONE except for denormalized numbers). Since the most
significant bit of the significand is always one it does not need to be stored.

Table 5. IEEE Single Precision Floating Point Numbers.

EXPONENT SIGNIFICAND MEANING
128 0 INFINITY
128 Non Zero Not a Number (NAN)

-126 to 127 Anything Normalized Number
-127 0 Zero
-127 Non Zero Denormalized Number

7.2 IEEE Double Precision Format
The IEEE Std. 754 double precision (64-bit) floating point format which is widely implemented,
has an 1 1-bit excess 1023 integer exponent which ranges in value between —1023 to 1024. The two
extreme values serve as flags for special cases. The special cases are shown in Table 5. The
significand consists of one sign bit and a 53-bit magnitude mixed number (the binary point is to the
right of the most significant bit and is always a ONE except for denormalized numbers). Since the
most significant bit of the significand is always one it does not need to be stored.

Table 6. IEEE Double Precision Floating Point Numbers.

EXPONENT SIGNIFICAND MEANING
1024 0 INFINITY
1024 Non Zero Not a Number (NAN)

-1022 to 1023 Anything Normalized Number
-1023 0 Zero
-1023 Non Zero Denormalized Number

The IEEE floating point is a wonder of computer arithmetic since it has been widely accepted as a
standard for computers ranging from the smallest microprocessors to the largest supercomputers.
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9. Conclusions

Seven key developments in computer arithmetic have been described. They have been selected
because they are widely used and have made a significant impact in improving the performance of
computers of all types.
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