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ABSTRACT.

Deep Neural Networks (DNNs) have been extensively employed in the classification of medical images and achieve
impressive performance. But the success of DNNs is dependent on the large amounts of correctly labelled images.
However, noisy labels are often unavoidable in the real-world clinical scenarios, which significantly impact the
performance of the model. In this manuscript, we introduce a new sample selection method which could select the clean
samples adaptively without knowing the prior knowledge, such as label noise rates. We also integrated semi-supervised
learning during sample selection to fully utilize the noised dataset. Specifically, we calculate batch statistics in each
mini-batch and divide the samples into clean and noisy based on the statistics, then they are served as labelled and
unlablled in the semi-supervised manner. Furthermore, we use a joint loss to leverage useful information from unlabelled
data along with a supervised loss, which strengthens the model's robustness. To evaluate the effectiveness of our method,
we conduct sufficient experiments on a medical image dataset: Chaoyang. The results show that the proposed method
could deal with the noisy labels in real-world scenarios.
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1. INTRODUCTION
Deep learning methods have found broad application in the classification of medical images [1]. As is commonly
recognized, deep learning based methods exceedingly depend on large-scale correctly annotated training datasets [2].
However, it is challenging to collect such large and clean datasets in the real medical scenarios, because the annotation is
time-consuming and the noisy labels (incorrect labels) are often unavoidable during the artificial annotation. Therefore,
robust approaches that can copy with noisy labels are highly longed-for.

Previous works have achieved great success in learning with noisy labels (LNL), and they also demonstrated many
strategies to address this problem. Among these methods, a potential way to address noisy labels is sample selection. Its
main idea is to filter out noisy samples from the original noised training set. Then consider either dropping out them for
obtaining robustness against noisy labels or utilizing specific strategies to take advantage of the noisy data, such as
semi-supervised learning (SSL). Sample selection based approaches have yield unprecedented results in many noisy
image classification scenarios, demonstrating a high tolerance for label-noise. For example, several works [3,4,5] train
two networks concurrently to select the clean samples based on a strategy called “small loss” to combat noisy labels.
However, the aforementioned methods require information of noise rate which would be limited in real clinical scenarios
since the noise rate of the medical image datasets is typically unknown in their nature.

To address the issue mentioned above, in this manuscript, we present an adaptive sample selection method with a joint
loss for medical image classification, which could differentiate between clean and noisy samples based on the statistics
of samples’ prediction probability in each mini-batch. In addition, we take account of the class labels in the process of
calculating the batch statistics, so the selection is also related to the given labels of the samples. Moreover, a
dual-networks co-training strategy (DCS), derived from Mixmatch [6], is devised to make full use of the training data
and to explore useful information within the noisy data. We perform experiments on a publicly available medical image
dataset: Chaoyang. The experimental results demonstrate that our method achieves superior accuracy when compared to
other approaches. Our contributions are as follows:
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• We propose a robust noisy label learning method for medical image classification, which does not need any prior
knowledge, thus it is more suitable for real-world noisy datasets.

• Dual-networks co-training strategy (DCS) is applied to take full advantage of the noisy data, which can explore the
useful information within the noisy samples.

2. METHODS
In this section, we showcase the primary contribution of this paper, a robust noisy-label learning algorithm for medical
image classification based on the batch statistics. An overview of our proposed architecture is shown in Fig. 1. It mainly
contains three modules: the dual-network framework, the mini-batch selection module, the mixmatch module.

Figure. 1 The overall architecture of our method

2.1 Adaptive selection through batch statistics
Under the noise label over K classes, the labels supplied in the training set could be incorrect. We aim to train a classifier
f(·; θ) on this noisy-labeled training set so that it can exhibit good generalization on an unknown test set. As mentioned
above, most algorithms need to know the prior knowledge which is impractical in real scenarios. Inspired by work
BARE [7], in order to make our approach more applicable to real-world datasets, we introduce an adaptive curriculum
which can be described as a weighted loss [8, 9], disregarding the regularization term and takingli = L(f(xi; θ), yi), the
optimization becomes

θ, �
min L(θ, �) = i = 1

m ωili − ς � 1� = i = 1
m (ωili + (1 − ωi)ς − mς)� (1)

where −� � 1, (� > 0) represents the curriculum, m is the size of a mini-batch. The optimal � for any fixed � is:
�� = 1 if �� < � and �� = 0 otherwise. When we put � lie on the class label (�� is a function of � and of all ��
whose labels corresponding to class j), we could maintain an adaptive curriculum where the �� is derived from all �� of
that class within a mini-batch and the present � . Since the inverse relationship between the loss and the posterior
probability, our selection criterion for a sample involves the requirement that the assigned posterior probability surpasses
a threshold derived from a statistic of the observed posterior probabilities within the mini-batch. That is to say, we assign
weights to samples in every mini-batch as

ωi =
1, f(xi; θ) ≥ ςj = μj + σj

0, else (2)

where μj and σj represent the mean and variance of the class posterior probabilities for samples that are labeled as j.

2.2 Semi-supervised learning with MixMatch
Based on the adaptive selection, we have effectively distinguished between clean and noisy samples. In order to make
full use of the dataset, inspired by DivideMix [10], we further employ the dual-network co-training strategy (DCS) with
MixMatch, which helps alleviate the confirmation bias inherent in self-training where a single model may accumulate its
errors. Given a mini-batch, after the mini-batch selection module, the samples are classified into clean and noisy subsets.
We view the clean and noisy as labelled and unlabelled in a semi-supervised setting. Then, we utilize the combined
predictions from the two networks to generate the labels for unlabeled samples. Specifically, MixMatch mixes the data,
in which each sample is combined with another sample randomly selected from the merged mini-batch of X and U. After
MixMatch, we get X∗ and U∗ , the loss on X∗ is the cross-entropy loss and the loss on U∗ is the mean squared error.
Furthermore, to avoid allocating all samples to a single category, we use a regularization term Lreg in the mini-batch
which is applied by [11] and [12], to regularize the mean output of the model throughout all instances in the mini-batch.
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Lreg = �=1
K 1

K
� log ( 1

K
1

X∗ + U∗ x∈X∗+U∗ f�(x; θ)� ) (3)

2.3 Loss Functions
In our experiments, the total loss is:

L = λLx + (1 − λ)Lu + Lreg (4)

Lx is calculated on labelled samples with clean labels, Lu is calculated on unlabelled samples with noisy labels, Lreg is
the regularization term. λ is a parameter, we set it to be 0.5 in our experiment.

3. EXPERIMENTS
3.1 Datasets and Experimental details
To validate the effectiveness of our method, we conducted comparative experiments on a challenging medical image
dataset: Chaoyang [13].

Chaoyang dataset comprises 4021 training samples and 2139 testing samples. There are 664 adenoma, 1404
adenocarcinoma, 842 serrated, and 1111 normal in the training data. There are 273 adenoma, 840 adenocarcinoma, 321
serrated, and 705 normal in the testing data. It consists of 4 classes of colon slides, sourced from Chaoyang hospital.
The patch dimensions are 512 × 512, and each patch is labeled by three experts. The testing set reflects a consensus
opinion from all three pathologists. Approximately 40% of the training samples exhibit inconsistency and are labelled by
one expert. For preprocessing, we perform random horizontal flip and resize the image to 256 × 256. The label noise in
Chaoyang arises from a real-world scenarios, and the noise denotes the labeled samples that are genuinely incorrect,
rather than artificially adding.

We utilized PyTorch to implement the codes and executed them on a workstation equipped with 32 GB NVIDIA Tesla
V100 GPU. For the two networks, we use Resnet34 and Adam as optimizer with initial learning rate of 3e-3. The
maximum epoch is set to 40. At the 10th, 20th, 30th epochs, the learning rate is reduced by half. We set the batch size to
16 for the dataset.

3.2 Comparison experiments and results
3.2.1 Comparison methods
We conduct experiments and compare our method to BARE [7], DM [10], SPR-LNL [14], LongReMix [15]. For these
methods all do not need know the noise rate.

BARE [7] (Deep Patel et al. 2018). It proposed an adaptive sample selection method for learning with noisy labels.

DM [10] (Junnan Li et al. 2020). It used semi-supervised learning (SSL) for learning with noisy labels, which adopted
Gaussian Mixture Model (GMM) to model loss distribution of each sample. Then, the clean samples and noisy samples
were used as labelled and unlabelled for SSL.

SPR_LNL [14] (Yikai Wang et al. 2022). It was based on statistical sample selection, which proved to be guaranted

LongReMix [15] (Filipe R. Cordeiro et al. 2023). It adopted unsupervised learning to separate the training data into clean
and noisy, then used semi-supervised learning to minimize the empirical vicinal risk (EVR).

3.2.2 Evaluation criteria
We conducted all experiments using the open-source codes provided by the authors. Additionally, we trained the model
three times for each experiment and reported the mean value along with the standard deviation. Our evaluation metrics
include Accuracy (ACC), Precision, Recall, F1 Score (F1), AUC, and Specificity.

3.2.3 Experiment results
Table 1 shows the comparative results on Chaoyang dataset. From the table, we can see that our method demonstrates
superior performance, achieving an ACC, AUC, F1 score, Precision, Recall, Specificity of 83.47%, 94.22%, 76.72%,
79.37%, 75.19%, 94.26%, respectively. SPR-LNL gets comparable performance to ours and has a slightly higher recall
with 75.38%, it can be explained that they adopt a penalized regression to help identify the noisy samples which is a
theoretically guaranteed framework. Furthermore, they also combine it with semi-supervised algorithm to utilize the
information with the noisy samples. In contrast, the results of BARE are the poorest with 61.46% ACC. This indicates
that methods designed for natural images may not necessarily perform well on medical images. Moreover, this once
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again confirms that simply discarding noisy samples can lead to the loss of essential information, especially in medical
imaging scenarios.

Table 1. Comparison results with other methods.

Method ACC AUC F1 score Precision Recall Specificity
BARE 61.46±2.31 75.30±1.61 54.12±1.55 53.75±1.53 54.83±1.65 86.71±0.76
DM 75.67±1.62 88.46±2.53 66.31±2.27 69.06±2.67 65.92±1.69 91.18±0.61

SPR-LNL 83.06±0.23 94.18±0.14 76.45±0.12 79.02±0.68 75.38±0.17 94.00±0.04
LongReMix 76.41±0.88 89.28±0.72 65.96±1.80 70.05±2.06 64.81±1.38 91.48±0.33

Ours 83.47±0.20 94.22±0.21 76.72±0.14 79.37±0.62 75.19±0.14 94.26±0.06

3.3 Ablation study
In this subsection, we analyze the performance benefits from each component in our method. We conduct ablation
experiment on Chaoyang dataset, the results are presented in Table 2. The batch selection (abbreviated as BS) means to
train the network without MixMatch and just use one network, which degenerates to the work BARE. To validate the
gain of dual-networks, we train two networks with batch selection and use cross-entropy loss (abbreviated as DCS + BS).
To validate the proposed joint loss, we train two networks with batch selection and MixMatch (abbreviated as DCS + BS
+ Mix). The results indicate that each component contributes to a certain improvement in the overall performance.
Specifically, dual-networks co-training strategy improves a lot compared to the single-net BS. It gets a further modest
improvement by adding the joint loss. In this study, the method with DCS and Mix achieves a higher ACC, AUC, F1 and
Precision.

Table 2. Module ablation on Chaoyang dataset.

Method ACC AUC F1 score Precision Recall Specificity

BS 61.46±2.31 75.30±1.61 54.12±1.55 53.75±1.53 54.83±1.65 86.71±0.76
DCS+BS 83.09±0.32 93.90±0.75 76.54±0.67 77.68±0.57 75.82±0.57 94.27±0.14

DCS+BS+Mix 83.47±0.20 94.22±0.21 76.72±0.14 79.37±0.62 75.19±0.14 94.26±0.06

4. CONCLUSION
In medical imaging tasks, it is challenging to collect a large amount of samples with correct labels due to the complex
situations in medical imaging field. There have been many algorithms to address the issue of noisy labels, but many of
them require some prior knowledge, such as noise ratio or a small clean dataset. However, the prior knowledge is
unavailable in real medical datasets. In this manuscript, we present a robust noisy label learning method for medical
image classification to solve the above problem. Specifically, we adopt adaptive sample selection based on batch
statistics to distinguish between clean and noisy samples. Unlike other methods, we do not discard the noisy samples, we
propose a joint loss to utilize them in a semi-supervised manner. We demonstrate the effectiveness of our method on a
real-world medical image dataset, which proves its reliability in dealing with real medical image classification with noisy
labels.
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