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ABSTRACT

Time series prediction is a fundamental problem in scientific exploration and artificial intelligence (AI) technologies have 
substantially bolstered its efficiency and accuracy. A well-established paradigm in AI-driven time series prediction is 
injecting physical knowledge into neural networks through signal decomposition methods, and sustaining progress in 
numerous scenarios has been reported. However, we uncover non-negligible evidence that challenges the effectiveness of 
signal decomposition in AI-based time series prediction. We confirm that improper dataset processing with subtle future 
label leakage is unfortunately widely adopted, possibly yielding abnormally superior but misleading results. By processing 
data in a strictly causal way without any future information, the effectiveness of additional decomposed signals diminishes. 
Our work probably identifies an ingrained and universal error in time series modeling, and the de facto progress in relevant 
areas is expected to be revisited and calibrated to prevent future scientific detours and minimize practical losses. 
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1. INTRODUCTION
Time series, a fundamental data form composed of successive sequences of data points, is critical in many time-sensitive 
areas such as meteorology [1], economics [2], environics [3] and sociology [4]. Predicting the future trends of time series 
based on past observations enables researchers to understand the future patterns of natural and societal signals at different 
time scales, ranging from long-term sunspot activities and flares [5], hour-level tropical cyclone trajectories [6], and near-
real-time fluctuations of volatile renewable energy like solar [7] and wind [8]. Thus, accurate time series prediction has 
tremendous potential for various research and industrial applications, such as decision-making [9], resource allocation [10], 
business planning [11], and risk management [12]  

In the realm of physical-related areas such as oceanography and meteorology, canonical time series prediction models rely 
on numerical methods derived from physical modeling [13, 14]. Although these methods have been extensively used and 
improved over the decades [15, 16], the heavy computational costs hinder their applications in large-scale and real-time 
systems, and contradict the trend of green computing. To address this challenge, artificial intelligence (AI)-based methods 
have emerged as an alternative approach for predicting natural time series, offering the advantages of high efficiency, 
flexibility, and scalability [17]. With the rise of deep learning, natural time series prediction models based on deep neural 
networks have garnered widespread attention and achieved impressive results [18]. This technology trend has impacted a 
broader interdisciplinary community that involves data-driven time series analytics [19]. 

Deep learning time series models have demonstrated their effectiveness in discovering rich and complex patterns hidden 
in big data [20, 21]. However, these models are often criticized for their lack of prior knowledge and awareness of physical 
laws, resulting in non-robust predictions [22, 23]. To handle this issue, researchers have proposed to explicitly inject 
manually crafted information into AI models to empower them with accumulated domain knowledge [24, 25]. A 
representative example is time-frequency decomposition, which can help AI models deal with highly volatile and noisy 
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time series data [26, 27]. Through learning on stabilized decomposition signals, models can better capture inherent patterns 
that match physical phenomena [28, 29]. Consequently, a considerable amount of work along this research line has been 
extensively conducted in various areas [30], with encouraging and even striking results reported in many downstream 
applications [31, 32, 33]. 

Figure. 1 The data leakage problem of leveraging signal decomposition in time series prediction. A widely employed method 
is performing sequence decomposition on the entire sequence, and then dividing the decomposed sequences into training and 
test splits. When training on the decomposed sequences, the information of the test set is leaked since most sequence 
decomposition methods are not strictly causal. Future information leakage usually causes considerable overestimation of 
model prediction accuracy. A correct method for utilizing sequence decomposition techniques without data leakage is using 
the sequences before the time of each test data point to compute decomposed subsequences for both training and test. In this 
way, the model is completely agnostic to future information. 

While the direction being pursued is plausible, our systematic investigation suggests it may be misguided. Our findings 
uncover a frustrating issue that the effectiveness of signal decomposition methods is severely overestimated, probably due 
to the inconspicuous information leakage introduced by improper data processing practices that conduct signal 
decomposition on both past and future data (Fig. 1). Given the powerful function-fitting ability of deep learning methods, 
even subtle and implicit leakage of future information can lead to our hallucination of prediction accuracy enhancement. 
Unfortunately, the inability to use leaked information in practical contexts may yield severe model performance 
degradation and introduce unrecognized risks to scientific research and engineering endeavors. If not corrected promptly, 
such a course could lead to potential misleads and resource waste in both academia and industry, as the painful lesson 
learned from “cardiac stem cells” [34]. Our revisiting is expected to help calibrate researchers’ estimation of the 
performance of signal decomposition-enhanced time series forecasting AIs, meanwhile providing valuable guidance and 
insight for engineering trouble-shooting, technological evolution, and scientific progress. Our work is also intended to 
inspire the research community to scrutinize certain well-established technological paradigms and proactively identify 
those neglected pitfalls. 

2. RESULT
We conduct extensive experiments on six datasets in different domains, including significant wave height, wind speed, 
humidity, solar power, air pressure, and temperature (see details in Supplementary Methods). We select three 
representative signal decomposition methods, i.e., Empirical Mode Decomposition (EMD) [35], Discrete Wavelet 
Transform (DWT) [36], and Singular Spectrum Analysis (SSA) [37]. We use two different data processing procedures: (1) 
decomposition on all time steps, which introduces concealed future information leakage, and (2) decomposition on strictly 
restricted causal decomposition, which can only utilize past observations.  

We test the results of the naive persistence baseline, the vanilla LSTM model, and LSTMs combined with leaked or non-
leaked decomposed sequences (Fig. 2). On all six datasets, the vanilla LSTM consistently achieves lower errors than the 
persistence strategy, showing its expected predictability. The prediction errors decrease at an abnormal scale when 
incorporating decomposed signals with inherent future label leakage, while the errors are calibrated when using the non-
leaked data. For all methods on all datasets, a slight performance degradation is observed compared with the vanilla LSTM 
when we incorporate decomposed sequences without a glance at future data points. SSA shows the most serious leakage 
problem among different decomposition methods, i.e., the prediction errors reduce up to more than 90% on all datasets.  

These phenomena are unexpected but reasonable, since the sequences decomposed on the entire series encode rich clues 
about future trends, such as forthcoming peaks and valleys. Thus, the models learned and tested on sequences with potential 
data leakage usually show superior but inauthentic results. Moreover, the effectiveness of signal decomposition in natural 
time series prediction is challenged by the results, since it fails to boost the performance of the basic LSTM model. The 
above findings show some possible contradictions to some prior studies [38, 39, 40]. There is a small but non-negligible 
possibility that, this data leakage issue exists in a broad range of research in the natural sequence area, causing an over-
estimation of the effectiveness of signal decomposition in predictive problems.  

Proc. of SPIE Vol. 13513  135130M-2



 

We also reproduce this worrying issue in different time series prediction models. By comparing the vanilla MLP, LSTM, 
and Transformer models and their variants combined with decomposed sequences (Fig. 3), we verify the universal impact 
of data leakage on all compared models. Although these models have different architectures, model parameter capacities, 
and computation processes, the implicit leakage of future data can be consistently captured by them. Even the time-agnostic 
MLP model can achieve rather low errors when the leak occurs. This result reveals that, a large family of machine learning 
models can be influenced by the improper data processing method. 

To further analyze the impact on the prediction behaviors of time series prediction models, we visualize the real 
observations and the prediction curves on different datasets (Fig. 4). We use LSTM as the basic model and EMD as the 
decomposition method. The prediction curves with data leakage closely match the trends of real observations, which is 
consistent with the quantitative analysis above. However, for the model tested on non-leaked data, the predictions have 
lower sensitivities to frequent or drastic fluctuations, as shown in subplots A, B and D. This probably indicates a reason 
for the ineffectiveness of sequence decomposition in these cases, i.e., the frequency domain signals extracted from the past 
observations may enforce the model to follow past trends rather than discover upcoming patterns. The overfitting problem 
of these frequency signals makes models less sensitive to the quick changes in the time domain, since these fluctuations 
correspond to outliers in the frequency domain that are missing in past training data. Thus, the real effectiveness of signal 
decomposition in time series prediction is not as salient as we expect. 

 

Figure. 2 Influence of potential data leakage in signal decomposition on prediction performance. Error bars are standard 
deviations of five repeated experiments. Comprehensive analysis is conducted on six datasets with different physical time 
series and different signal decomposition methods, including Empirical Mode Decomposition (EMD) [35], Discrete Wavelet 
Transform (DWT) [36], and Singular Spectrum Analysis (SSA) [37]. When introducing decomposed time series with future 
information encoded, the prediction errors consistently decrease at an unprecedented scale (e.g., 91.4% for SSA on the 
significant wave height dataset). The actual debiased performance with a strictly causal decomposition process substantially 
degrades, indicating rather limited and even negative impacts of decomposed signals on model predictability (the performance 
differences between leaked and non-leaked versions are significant in two-sided t-test, p < 0.001). Since the number of 
learnable parameters remains similar, it is highly suspected that data leakage may lead to a hallucination of the effectiveness 
of decomposed sequences. 

 
Figure. 3 The impact of data leakage on various time series prediction models. Error bars are standard deviations of five 
repeated experiments. We test three canonical neural network architectures, i.e., multi-layer perceptrons (MLP), long short-
term memory (LSTM) [41] network, and Transformer [42], assisted by the represented signal decomposition method EMD. 
Although these models are diverse in their characteristics and model parameter sizes, consistent mismatches between models 
learned on leaked and non-leaked data are observed (p < 0.001 in two-sided t-test). It indicates a universal problem in the data 
processing procedure of signal decomposition-based time series prediction research. 

Finally, we evaluate the impact of different components in the family of decomposed sequences. We take EMD as an 
exemplary method for analysis. We add one of the different components into the LSTM model and compare its 
performance change (Fig. 5). We uncover that the abnormal error decrease is majorly brought by the high-frequency 
components, and the first sequence has the most salient contribution. It implies that the model mainly overfits the 
fluctuation patterns encoded by high-frequency components, which have direct correlations with the actual values of future 
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data observations. Based on this finding, we can explain the phenomenon that SSA leads to greater leakage impacts than 
EMD (Figure 2), since SSA draws the global picture of signals in the frequency domain while EMD only focuses on the 
patterns of local minima and maxima. This may further indicate that the improper data processing method may cast larger 
impacts on signal decomposition methods with heavier frequency information dependencies. 

 
Figure. 4 The groundtruth curves and predicted curves of a randomly selected sample on different datasets. We compare the 
LSTM model with raw sequences only and EMD sequences with or without leakage. We observe different prediction patterns 
between leaked and non-leaked versions. For samples with frequent or drastic fluctuations (e.g., subplot A, B, and D), the 
non-leaked EMD version shows lower sensitivity and higher biases compared with the original LSTM model. It reveals a 
phenomenon that introducing extra frequency domain signals may weaken the model’s capability of modeling strong 
fluctuations in the time domain, possibly due to the overfitting of past frequency domain data. 

3. DISCUSSION 
Time series prediction is a pivotal problem across various scientific research domains. With the accumulated studies and 
verifications from different scenarios, it seems that a consensus has been achieved that signal decomposition techniques 
are critical complementary to prediction models in terms of embedding physical-world knowledge. Unfortunately, after 
thorough analysis and scrutinization, we uncover an unexpected matter that the effectiveness of signal decomposition is 
exaggerated due to an inconspicuous type of data leakage. We confirm that, decomposing the time series on the entire data 
including test splits introduces considerable future information leakage, even if we incorporate the decomposed data points 
before the test time only. Such leakage causes a universal and dramatic performance overestimation of various models in 
various scenarios. We also uncover a phenomenon that high-frequency patterns encoded with future information majorly 
account for the label leakage, since they are probably more informative for forecasting short-term future trends. Our work 
whistleblows an alarming issue in the time series prediction area that a well-established practice seems to be questionable 
and needs comprehensive re-examination.  

 
Figure. 5 Impact of residual and different Intrinsic Mode Functions (IMFs) on information leakage. Error bars are standard 
deviations of five repeated experiments. We add one of the IMFs in EMD or the residual part into the LSTM model in each 
experiment. Sequences with smaller indexes contain higher frequency components. The results show that the first component 
with the highest frequency has the most salient impact on the abnormal performance change. A few high-frequency 
components show major effects and the rest low-frequency ones do not significantly contribute to the label leakage. It shows 
the subtle local trends of time series play more important roles in time series prediction and the leakage of such clues causes 
more misleading conclusions. 

The act of revisiting scientific findings holds immense value and significance as time series prediction is a fundamental 
aspect of many fields. Unfortunately, unintended mistakes have led to scientific errors, missed opportunities, and economic 
and social losses. This highlights the need to improve the systematic and reproducible nature of scientific research and 
encourage healthy and sustainable development of the scientific research ecology and the linkage between science and 
society. We aim to use our work as a flag in the process of accumulating scientific knowledge to champion these ideals 
and address problems hidden in other fields.  
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Our study has several limitations. Firstly, we cannot ensure that we have exhaustively reviewed all relevant literature and 
available approaches to investigate the existing issues. Secondly, there are diverse decomposition methods that can result 
in varying effects when applied in practice. We have only compared them based on typical and mainstream methods, and 
thus, other scenarios may exist. Our retrospective study aims to remedy past errors, and we cannot directly identify and 
correct existing flaws in actual systems. Therefore, it is necessary for researchers and technical experts to collaborate to 
minimize the impact of existing and potential issues. 

4. METHODS
Here we introduce the detailed experimental protocol of our analysis (Figure 1). Given a time series prediction dataset D 
with M independent samples, we divide each sample into two parts chronologically for training and test. For each sample 
𝓍𝓍 ∈  D, we denote the sub-sequence in the training and test sets as 𝓍𝓍t = [x1, x2, … , xP] and 𝓍𝓍v = [xP+1, xP+2, … , xQ], 
respectively, where P and Q −  P are their sequence lengths. We then use signal decomposition methods such as EMD, 
DWT, and SSA to obtain the decomposed sequences of the training sequence 𝓍𝓍t , which are denoted as Xd =
[𝓍𝓍t1,𝓍𝓍t2, … ,𝓍𝓍tK] , where K  is the number of decomposed components. In a typical method [33] for incorporating 
decomposed signals, the raw sequence 𝓍𝓍t and the series of decomposed sequences Xd are concatenated together to form 
the processed data Xp. 

The time series prediction model receives the above sequences as the input. It can be implemented by various architectures, 
such as traditional machine learning methods (e.g., SVM [43]) and deep learning models like MLP [44], CNN [45], LSTM 
[46], and Transformer [47]. Denote the prediction window of this model as W, then the model conducts prediction on Xp 
in a sequential way as follows: 

𝑥𝑥�𝑊𝑊+1 = 𝑓𝑓�𝑋𝑋𝑝𝑝[1:𝑊𝑊]; 𝜃𝜃�
…

𝑥𝑥�𝑃𝑃−1 = 𝑓𝑓�𝑋𝑋𝑝𝑝[𝑃𝑃 − 1 −𝑊𝑊:𝑃𝑃 − 2]; 𝜃𝜃�, (1)
𝑥𝑥�𝑃𝑃 = 𝑓𝑓�𝑋𝑋𝑝𝑝[𝑃𝑃 −𝑊𝑊:𝑃𝑃 − 1]; 𝜃𝜃�,

where f(∙; θ) represents the non-linear mapping function learned by the model with parameters θ, [i: j] stands for the 
slicing operation from the i-th to the j-th steps, and x�i means the predicted value at the i-th step. By comparing the 
predicted values with the real observations, we then compute the loss function ℒ. Taking the commonly used mean squared 
error as an example, the loss function on the sample 𝓍𝓍 is computed as follows: 

ℒ =  � (𝑥𝑥𝑊𝑊+𝑖𝑖 − 𝑥𝑥�𝑊𝑊+𝑖𝑖)2
𝑃𝑃−𝑊𝑊

𝑖𝑖=1

. (2)

The model parameters θ are therefore updated by minimizing ℒ via gradient descent algorithms (e.g., Adam). For more 
efficient and robust training, we also use the batch model training strategy by simultaneously optimizing the model on 
multiple samples, until the model converges. For easy model hyperparameter tuning, we randomly select 10% of training 
samples as the validation set. 

In the test phase, we use the model to predict the observations in the test split. We consider two types of data preparation 
methods. The first one is the leaked version, where the entire sequence 𝓍𝓍 is used for signal decomposition. we denote its 
decomposed sequences (with Q observation values) as X�d. For each prediction step i, we use the sliced subsequences of 
X�d as the model input for prediction as follows: 

𝑥𝑥�𝑃𝑃+𝑖𝑖 = 𝑓𝑓�𝑋𝑋�𝑝𝑝[𝑃𝑃 + 𝑖𝑖 − 𝑊𝑊:𝑃𝑃 + 𝑖𝑖 − 1]; 𝜃𝜃�, (3)

where X�p means the combination of the raw sequence 𝓍𝓍 and X�d. Since most signal decomposition methods like EMD 
and SSA are not strictly causal in theory, the decomposed sequences in fact contain the information on future observations, 
even though we only consider the data points before the prediction cutoff step.  

By contrast, the second one is a non-leaked version, where only the data points before the prediction time are used for 
signal decomposition. For the i -th prediction step, we use the truncated sequence 𝓍𝓍[1: P + i − 1]  to compute the 
decomposed sequences without future information leakage (denoted as X�d). It is further combined with the original 
sequence 𝓍𝓍 as the model input to infer the estimated value as follows: 
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𝑥𝑥�𝑃𝑃+𝑖𝑖 = 𝑓𝑓�𝑋𝑋�𝑝𝑝[𝑃𝑃 + 𝑖𝑖 − 𝑊𝑊:𝑃𝑃 + 𝑖𝑖 − 1]; 𝜃𝜃�, (4)  

where X�p means the combination of the raw sequence 𝓍𝓍 and X�d without future information leakage. In this way, we 
ensure that the model can only be aware of the information before the time for prediction, thereby no label information is 
leaked. If there is a sufficiently significant difference between the prediction accuracy obtained by the two data processing 
methods, we can confirm that the improper data processing procedure indeed brings unwanted overestimation of the 
effectiveness of signal decomposition-based time series prediction methods. 

5. APPENDIX 
5.1 Dataset 
We use 6 datasets for natural time series prediction in different scenarios. Their details are listed below. 

Significant wave height (Hs) dataset, which comes from the Coastal Data Information Program (CDIP) 
(http://cdip.ucsd.edu/offline/wavecdf/wnc browse.php?ARCHIVE/150p1/150p1 historic). It was collected on-site at the 
designated location (34.142 N, 77.710 W) of UCSD (University of California, San Diego), and the time range was from 
January 1, 2017, to December 31, 2020, i.e., a total of four years. Significant wave height data has a time resolution of 30 
minutes and a total of 70,128 points. 

Wind Speed Averaged (WSPD) dataset, which comes from the measured data of National Data Buoy Center’s East Coast 
site (Station 43.525 N, 70.141 W, https://www.ndbc.noaa.gov/). WSPD includes the average wind speed data of a total of 
32,158 points from January 1, 2002 to December 31, 2005 with a time resolution of one hour. 

Relative humidity (U) dataset, which comes from the Kaggle website (https: //www.kaggle.com/datasets/l3llff/electrical-
grid-power-mw-20152021?resource=download), is the measured data at a power plant in Germany. The denotation “U” 
represents the relative humidity at a height of 2 meters above the surface. The dataset covers the time period from December 
31, 2014 to July 8, 2021, with a time resolution of 15 minutes, resulting in a total of 228,526 data points. 

The daily sum of global horizontal irradiation (GHI) data, which comes from Solargis website 
(https://solargis.com/products/evaluate/useful-resources). GHI is the site data generated at the location Plataforma Solar 
de Almeria, Spain (coordinates: 37.094 N, 2.360 W, elevation: 497.0m a.s.l.). The GHI contains data for a total of 9,952 
points from January 1, 1994, to March 31, 2021, with a temporal resolution of one day. 

Air pressure (P) dataset is a simulated one from National Renewable Energy Laboratory (NREL) 
(http://maps.nrel.gov/wind prospector), which measures the air pressure at an elevation of 100 meters at the west coast of 
the United States (41.812 N, 124.317 W). It includes four years of air pressure from January 1, 2014 to December 31, 2017, 
with a time resolution of 15 minutes and 140,160 data points. 

Air temperature (T) dataset is also a simulated one from the same source as air pressure (P)(http://maps.nrel.gov/wind 
prospector). It measures the air temperature at the same elevation and location, with the same time resolution of 15 minutes 
and the number of data points of 140,160. 

We present exemplary sequence diagrams (Fig. 6) and detailed statistics (Table 1) of the above 6 datasets. 

 
Figure. 6 Exemplary time series plots of the datasets used in our experiments. Different datasets are varied in their sequence 
lengths and resolutions. 

Table 1. Statistics of the six datasets used in our experiments.  

 Hs(m) WSPD(m/s) U(%) GHI(kWh/m2 
) 

P(Pa) T(°C) 

Sequence Length 70,128 32,158 228,526 9,952 140,160 140,160 
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Number of Training 
Samples 

52,596 24,118 171,394 7,464 105,120 105,120 

Number of Test 
Samples 

17,532 8,040 57,132 2,488 35,040 35,040 

Mean 0.945 5.58 74.2 5.14 100.47k 13.1 
Standard Deviation 0.414 3.18 19.5 2.25 555 4.12 
Data Source Type Observed Observed Observed Observed Simulated Simulated 

 
5.2 Experimental Setup 
All data used in this study are processed using the information from the previous 12 steps to predict the subsequent step. 
The datasets are divided by time into a training set and a test set with a ratio of 0.75 to 0.25. Prior to training, the data are 
normalized using the MinMaxScaler technique. For both the MLP and LSTM models, the maximum training epoch is 
1,000 and the batch size is 32. The optimizer we use is Adagrad for MLP and Adam for LSTM, and the learning rate is 
0.0001. We set the epoch patience for early stopping as 30, i.e., the training will be terminated if the validation loss does 
not improve within the last 30 epochs. The MLP model contains three non-linear layers. The LSTM model consists of two 
LSTM layers followed by two fully-connected layers. The Transformer model we use has four Transformer encoder layers 
to extract features from the input sequence. The input feature dimension is set to 32. By using sinusoidal positional 
encoding, the model encodes the input sequence and adds it to the input so that positional information can be captured. In 
each Transformer encoder layer, the multi-head self-attention module has 8 attention heads and their output dimension is 
32. The outputs from the Transformer encoders are aggregated using average pooling to obtain the hidden representation 
of the entire sequence. A fully connected layer with 128 neurons and ReLU activation function maps it to the predicted 
value. The optimizer employed is Adam, and a custom learning rate scheduler [42] is utilized to dynamically adjust the 
learning rate for better convergence. For the SSA method, we set the number of decomposed sequences to 3. For all models, 
the loss function and validation metrics are evaluated using the Mean Absolute Error (MAE). In the test phase, we use 
Mean Squared Error (MAE) as the main metric and include Mean Absolute Percentage Error (MAPE) as well as the 
coefficient of determination R2 as supplementary metrics. 

5.3 Experimental Results in All Metrics 
Here we present the complete results of different experiments in all three metrics (Table 2). The phenomena reflected by 
different metrics are consistent. 

Table 2. The results of different models with different dataset processing methods. “Leak” indicates the data split method with 
future information leakage while “No Leak” indicates our causal data decomposition method. The results show that the leaked 
versions of all models show abnormal improvements over the original models without decomposed sequences. The 
performance decays when the information leakage is removed. The results in terms of different metrics exhibit consistent 
patterns. 

Model 
Hs WSPD U GHI P T 

MSE* MAPE R2 MSE MAPE R2 MSE MAPE R2 MSE MAPE R2 MSE MAPE R2 MSE MAPE R2 

Persistence 3.092 4.175 0.9812 1.663 30.28 0.8494 8.613 1.935 0.9772 1.514 22.79 0.6843 243.7 0.0106 0.9994 0.0679 1.352 0.9971 

MLP 2.838 4.005 0.9828 1.573 30.15 0.8575 8.304 1.987 0.9781 1.149 23.58 0.7603 259.1 0.0112 0.9993 0.0690 1.397 0.9970 

MLP+EMD(Leak) 0.813 2.210 0.9951 0.371 13.42 0.9664 1.466 0.824 0.9960 0.462 12.62 0.9037 129.5 0.0077 0.9997 0.0403 1.162 0.9982 

MLP+EMD(No Leak) 4.224 4.873 0.9743 2.038 36.03 0.8153 8.688 2.227 0.9770 1.191 24.39 0.7517 423.2 0.0144 0.9989 0.1056 1.801 0.9953 

LSTM 35.76 3.775 0.9836 1.543 30.15 0.8602 8.313 1.902 0.9780 1.097 22.92 0.7712 188.9 0.0096 0.9995 0.0550 1.176 0.9976 

LSTM+EMD(Leak) 0.573 1.808 0.9964 0.326 11.86 0.9704 0.630 0.396 0.9983 0.420 11.50 0.9124 38.19 0.0042 0.9999 0.0132 0.598 0.9994 

LSTM+EMD(No Leak) 4.165 4.781 0.9747 1.979 34.49 0.8207 8.786 2.367 0.9768 1.206 24.09 0.7484 302.1 0.0122 0.9992 0.0792 1.542 0.9966 

LSTM+DWT(Leak) 0.233 0.902 0.9986 0.131 6.148 0.9896 0.079 0.174 0.9998 0.103 5.485 0.9786 27.18 0.0036 0.9999 0.0086 0.437 0.9996 

LSTM+DWT(No Leak) 3.209 4.229 0.9805 1.800 30.36 0.8369 8.731 2.396 0.9769 1.300 23.33 0.7289 225.7 0.0105 0.9994 0.0701 1.434 0.9970 
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LSTM+SSA(Leak) 0.020 0.264 0.9999 0.004 1.158 0.9996 0.006 0.087 0.9999 0.007 1.425 0.9986 1.477 0.0008 0.9999 0.0008 0.128 0.9999 

LSTM+SSA(No Leak) 3.325 4.390 0.9798 1.825 30.32 0.8347 9.365 2.723 0.9753 1.385 25.94 0.7111 201.5 0.0099 0.9995 0.0703 1.315 0.9970 

Transformer 2.810 3.924 0.9829 1.570 31.03 0.8577 8.116 1.957 0.9786 1.103 22.91 0.7698 310.7 0.0113 0.9992 0.0636 1.323 0.9973 

Transformer+EMD(Leak) 1.184 2.276 0.9928 0.368 13.10 0.9666 1.233 0.644 0.9971 0.399 11.21 0.9168 187.6 0.0085 0.9995 0.0372 1.014 0.9984 

Transformer+EMD(No 
Leak) 4.355 4.810 0.9735 2.106 36.86 0.8092 9.483 2.598 0.9749 1.216 24.53 0.7465 363.4 0.0130 0.9990 0.0817 1.584 0.9965 

*The MSE data of the Hs dataset has been enlarged by 1000 times (the unit is m2*10−3). 
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