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ABSTRACT 

This paper introduces an objective method to measure students’ achievement. Among many popular methods for 

evaluating and testing students’ scores, different participants often obtain different results on subjective questions, which 

obviously lose the objective and fair standard for students’ evaluation. In order to overcome these defects, a new scoring 

method is recommended in this paper, so that different raters can obtain more objective and fair results in the test of 

subjective questions as much as possible. In this paper, this scoring method is divided into some main essential steps, 

which can be summarized as: find out the key points of subjective questions, and divide the questions into several 

different scoring grades according to different scoring steps.  
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1. INTRODUCTION 

The main defects of subjective test result evaluation are: different raters often get different results; The test results 

depend on the difficulty of the test questions, because the questions with different difficulty are not equivalent; Lack of 

scientific methods to evaluate errors. Therefore, using scores to evaluate subjective tests is not very scientific. This paper 

introduces a method of objectively evaluating students’ achievements, which can overcome the above defects. 

2. SCORING OF SUBJECTIVE QUESTIONS 

An example is discussed below1. 

Solving the equations: 
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The solving steps: According to the inequality (1), solutions have to 

• Step (a):
2
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3
− x  1 point; 

• Step (b): inequality (2), we can get 0 or 1 x x  2 points; 

• Step (c): their common solution is 0
2

3
− x or 

2

5
1  x  4 points; 

Because the examinee’s responses at each step have two results: right or wrong, the examinee’s response at each step is a 

random event. 

Suppose
3 5

:
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A x−   ; : 0  1B x or x  ; 
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C x x−     , through the analysis of the solution process 

of case 1, it is not difficult to find that no matter whether the subject’s answer to equation (1) is right or wrong, it will not 

affect the subject’s answer to equation (2). In other words, regardless of whether the examinee’s answer to equation (2) is 

right or wrong, it will not affect the examinee’s answer to Inequality (1). It can be seen that event A  and event B  are 
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independent of each other. However, only after event A  and event B  occur at the same time, event C may occur. If 

event A  or event B  does not occur, event C must not occur, thus CBA  )( . 

Through the above analysis, it is not difficult to find that the three events A , B , and C satisfy the following 

relationships: (1) event A , B are independent; 2) CBA  )( . According to the relationship between A , B , C , the 

following results may appear in the process of problem solving1: 

• Events A  and B  do not occur, that is, the examinee’s answers to both equations (1) and (2) are wrong, and the 

answer on C must be wrong. That is, an event occurred:
__ __

A B , denoted as 0 points; 

• Event A  occurs but event B  does not occur, that is, the subject answered correctly on equation (1) but incorrectly 

on equation (2), an event occurred:
__

A B , denoted as 1 points; 

• Event A  did not occur, but event B  occurred, that is, the subject answered incorrectly to equation (1), but the 

answer to equation (2) was correct, an event occurred:
__

A B , denoted as 2 points; 

• Events A  and B  both occur but C does not occur; event occurred: CBA − , denoted as 3 points; 

• Events A , B , and C all occur, denoted as 4 points. 

Assume that 
__ __ __ __

{ , , , , }A B A B A B A B C C=     − , the  contains all possible outcomes of the solution of case 1. 

Suppose that {0,1,2,3,4}X = , and define a 1 to 1 mapping function f : → X , the function is specified such that 

each “score” in X  corresponds to an event in the same position in  . 

Through function f , events that may occur during problem solving are linked to a set of numbers2, this number set X  

can be used as the scoring step of the quiz item. In other words, case 1 can be divided into 4 different scoring steps, each 

step is scored as 1 point, 2 points, 3 points, 4 points. If the scenarios in which the subjects scored 0 are also counted, then 

case 1 can be divided into 5 different scoring levels. Its advantage is that the test score of the subjects has nothing to do 

with the reviewers. For the same topic, different reviewers can also score the same score, avoiding the error caused by 

the reviewers’ personal reasons. 

3. INVARIANTS IN THE EXAMINATION 

In the test T . Let 1 2, ,..., NX X X denote the scores (true scores) of N examinee’s on test T , respectively, iX  

represents the score of the i-th subject in the test, iN  represents the total number of test scores not greater than iX , 

and i
i

N
P

N
=  represents the percentile of the examinee i  in the test. When N → , the limit value of iP  is the 

percentile of the examinee in the overall test3. 

It is further assumed that the test T will preserve the order of the examiners, the meaning of preserve the order of the 

examiners can be explained that: suppose 1T , 2T  are any two tests in the same attribute set, A , B  are any two 

examiners, the scores of examiner A  on 1T , 2T  are 1X and 2X respectively, examiner B  on 1T , 2T  are 1Y and 

2Y , then the corresponding relation of 2 2,X Y is as follows: (1) 2211 YXYX  ; (2) 2211 YXYX == ; (3)

2211 YXYX  . Under the above assumptions, percentile iP  is an invariant parameter4. 

Let 

2

2
i

t

iP e dt
 −

−
=  , i R  . From the definition of i , we can know that i  is uniquely determined by iP . Because 

iP  is an invariant parameter, i  is also an invariant parameter5. It is easy to know from the knowledge of mathematical 
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statistics, the estimation of ability parameter   has the following large sample properties: (1) The ability parameter   

is consistent estimation. (2) The ability parameter   obey the normal distribution (0,1)N . 

4. INVARIANT FRACTION 

Now we discuss how to convert the ability parameter into people’s habitual “score”6. Let 
h

X
k

 −
= , because 

~ (0,1)N , according to the nature of normal distribution, it is not difficult to get
2

1
~ ( , )

h
X N

k k
− . Due to 

~ (0,1)N , from the nature of normal distribution, the probability of falling within the interval ( 2.5,2.5)−  is slightly 

0.995, the probability of falling within interval ( , 2.5)− −  or (2.5, )+  is about 0.05. Utilize the property, 

2.5 = −  or 2.5 =  can be approximately regarded as an infinity point. When 2.5h = − , that is, 2.5 = − regarded as 

the zero point of X . Since the length of interval ( 2.5,2.5)−  is 5, if the test score is set to 100 points, 
5 1

100 20
k = =  

can be taken. Take 
0 2.5

20( 2.5) 2.5 2.5 ,
100 2.5

X


 


 −
= + −  



so under the above assumption, ~ (50,400)X N , and the 

value range of X  is  0,100 .Here X  is called the ability score. The ability score obtained through the above 

method conversion also has all the properties of the ability parameter. Specifically, ability scores have the following 

characteristics7. 

4.1 Ability score is consistent estimation 

This is because the ability parameter is a consistent estimation, the ability score converted from the ability parameter 

must also be a consistent estimation. If the true value of an examiner’s ability score is 0X . X


 is the ability score 

estimate of the examiner. Then, when the test sample size n→ , X


 will converge to the true value 0X  in 

probability. This property provides a theoretical basis for accurate estimation of capacity fraction8. 

4.2 Ability score is a “constant score”  

Since the ability parameters are invariant, the ability scores obtained from the conversion of ability parameters also have 

the property of invariance. Because of this, the subjects’ ability score has nothing to do with the test. A participant can 

participate in high difficulty test or low difficulty test9. Except for the sampling error, the same ability score estimation 

will be obtained. Test scores in the general sense do not have such properties. 

4.3 Normal distribution of ability scores 

Since the capacity parameters are normally distributed, the ability scores must also be normally distributed. Because the 
ability parameters or ability scores obtained by the above method are invariant parameters, in the case of large sample 

random sampling, the ability scores from different tests can be directly compared because they are equivalent. And in the 

sense of ability score, the college entrance examination scores for different years will not fluctuate too much because of 

the change of test difficulty. 

5. APPLICATION EXAMPLES 

As an application of the above method, we will discuss an example below1.  

Table 1 is the estimated value of item parameters obtained from a practical test. There are 24 test questions in this test, 

including 8 selection questions, 8 filling questions, and 8 multi-level scoring questions. A total of 1226 participants 

participated in the test. The average score of the test is 60, and the standard deviation is 24.44. 
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Table 1. Parameter estimates for a test item. 

Item 1 2 3 4 5 6 7 8 9 10 11 12 

Difficulty 0.84 0.77 0.35 0.64 0.81 0.81 0.66 0.54 0.86 0.70 0.62 0.70 

Discrimination 0.50 0.48 0.57 0.42 0.47 0.63 0.49 0.43 0.49 0.46 0.46 0.39 

Item 13 14 15 16 17 18 19 20 21 22 23 24 

Difficulty 0.79 0.70 0.62 0.43 0.79 0.66 0.65 0.34 0.50 0.54 0.54 0.29 

Discrimination 0.45 0.51 0.52 0.32 0.47 0.65 0.69 0.59 0.70 0.69 0.69 0.68 

 

Figure 1. The distribution of test scores for 1226 candidates in the test. 

 

Figure 2. The ability score distribution diagram of 1226 examinees after converting the test score of each subject into ability score 
according to the method described in this paper. 

From Figure 1, we can see that in this test, the distribution of test scores showed a gentle upward trend, with a certain 

proportion of examinee in each score range. This shows that the distribution of examinee with high or low scores in the 

test is relatively uniform, and the proportion of examinee with high scores is relatively large. Among them, examinee 

with scores higher than 60 accounted for 53% of the total, and examinee with scores higher than 80 accounted for 26.6% 

of the total. In the range of 80 to 90, the proportion of examinee reached the peak. On the whole, the distribution of 

scores showed a negative skew trend. 

From the distribution of ability scores shown in Figure 2, we can see that there is a great difference between the 

distribution of ability scores and test scores. Also, we can see that examinees with scores above 60 account for 24.6% of 

the total, which is 27.4% points lower than 53% of the test scores. The examinees who scored more than 80 accounted 

for 2.6% of the total. The difference from the test score of 26.6% is 24% points. Its peak value appears in the range of 50 

to 60 points, and the distribution of ability score shows a significant normal distribution trend, with a variance of about 

400. 

It is worth noting that the distribution of test scores is rarely normally distributed, because test scores are strictly 

dependent on the difficulty of the test, and the distribution of test scores is not the same for different difficulty tests. 
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Because the ability score has nothing to do with the difficulty of the test, it is always normal in the case of large sample 

random sampling10. 

The ability score not only has the intuitive and easy to understand advantages of the test score, but also retains all the 

large sample properties of the ability parameters. Therefore, the ability score is a very ideal scoring method. 

6. TESTING ERROR 

In the classical test theory, the test error is mainly described by reliability and test standard error. However, reliability is 

a general and rough indicator, which only roughly reflects the average difference between the real score and the test 

score of the subjects, and cannot reflect the test error of the examinees at different abilities. Therefore, reliability and test 

standard error are not a good way to characterize the test error. In this paper, we will use another method to characterize 

the test error. 

Assuming that a test is composed of n  items, the ability score estimates of subjects with ability score 0X  on n  

items are 1 2, , , nX X XL ,
__

1

1 n

i

i

X X
n =

=  is the average score, according to mathematical statistics, when n→ , 

2__

0~ ( , )
S

X N X
n

, let 

__

0

/

X X
Z

S n

−
= , ~ (0,1)Z N  can be obtained. Let confidence level 0.05 = ,

2

1.96u =  can be 

obtained after calculation, therefore, in the 95% probability meaning, 1.96Z  =>

__

0 1.96,
/

X X

S n

−
  that is 

__ __

01.96 1.96
S S

X X X
n n

−   + . So the 95% confidence interval is 
__ __

( 1.96 , 1.96 )
S S

X X
n n

− + .Using the above 

formula, the confidence interval of the estimated ability score can be obtained. The confidence interval for the estimated 

capacity score shown in Figure 1 is shown in Figure 3. 

 

Figure 3. The confidence interval of the estimated capacity score. 

Note: The abscissa represents the estimated value of ability score, and the ordinate represents the true value of ability 

score. The lower curve represents the left-end curve of the confidence interval, and the upper curve represents the 

right-end curve of the confidence interval. 

Figure 3 is obtained as follows11: 

• Firstly, the examinees’ ability scores are divided into 50 intervals on average. Because there are 1226 candidates in 

this test, there are 24 candidates in each interval on average. 

• Standard deviation of ability scores for each interval S ; 
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• Taking the middle value of the ability score of each interval as the abscissa and 
__

1.96
S

X
n

−  as the ordinate to trace 

points in the rectangular coordinate system, where X  is the average number of ability scores of subjects in each ability 

score range, and n  is the sample number of test questions, in this example, 24n = , S  is the sample standard 

deviation of the ability score of the subjects in each ability score interval; 

• Connect the trace points mentioned in the previous step with a smooth curve to obtain the left end curve of the 

confidence interval of the capability score. The right endpoint curve of the confidence interval can be obtained by 

imitating this. 

In this case, due to the small number of samples in each ability interval, the error between the standard deviation of the 

sample S  and the overall standard deviation of the interval is large, so the error between the confidence interval is also 

large. If you can guarantee enough samples in ability interval, the resulting confidence interval will be more accurate. 

From the strip region of Figure 3, we can see that in this test, for the examinees whose ability scores are between 50 and 

70, the estimation error is the smallest. It is noted that the difficulty of most examinees in this test is between 0.5 and 0.7, 

while the test error is the smallest between 50 and 70, indicating that the test error is closely related to the difficulty of 

test items. 

In addition, from the expression of the left and right endpoints of the confidence interval, we can see that when the 

standard deviation is constant, the length of the confidence interval will become shorter with the increase of the number 

of test items n . When n  approaches infinity, the length of the confidence interval will approach zero. This shows that 

appropriate increase in the number of test items can effectively improve the test accuracy. Thus, the confidence interval 

can not only better reflect the test error at different abilities, but also better reflect the relationship between the test error 

and the number of test items1. 

In the classical measurement theory, the estimation of measurement error is mainly described by reliability and test 

standard error. From the approximate calculation formula of reliability 
2

2
(1 )

1

iSn
r

n S
= −

−

 , the reliability of this test 

can be calculated as 0.85r = , and the test standard error is 1 9.59y xS r = − = . 

Compared with the confidence interval, the method of using test reliability or test standard error to describe test error has 

the following defects: (1) Test reliability or test standard error only reflects the average difference between the test scores 

and the real scores of all examinees in the test. In this case, which is too rough and general, and is far less detailed than 

the confidence interval. (2) Test reliability or test standard error is based on strictly parallel test. In practice, strictly 

parallel test does not exist, so the practical significance of test reliability or test standard error is greatly reduced. (3) Test 

reliability or test standard error does not reflect the relationship between test number (even if strictly parallel tests do 

exist) and test item number and test error. That is to say, even if strictly parallel tests do exist, test reliability or test 

standard error basically remains unchanged no matter how many tests are conducted or how many test items are added. 

Therefore, test reliability or test standard error is a rigid indicator. 

Due to the above defects in test reliability or test standard error, it is not a good way to describe test error with test 

reliability and test standard error. Relatively speaking, it is a more scientific and reliable method to describe test error 

with confidence interval. 

7. CONCLUSION 

The characteristic of this paper is to give a new evaluation method under the guidance of item response theory (IRT). 

Since the ability parameter or ability score defined according to the method described in this paper is a constant 

parameter, in the case of large sample random sampling, the ability scores from different tests can be directly compared. 
For example, for the college entrance examination scores from different years, it can be directly compared in the sense of 

ability score, and the error is also controllable. Its popularization and application are of great significance to improve the 

scientificity and reliability of various tests. 
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