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ABSTRACT   

Driven by the need of always more accurate models, space optics instrument-based observations push constantly towards 
high accuracy measurements that require an excellent knowledge of the instrument. To achieve this, current classical 
technologies are limited by the complexity of current instruments, calling for disruptive technologies to take over. 
Therefore, Airbus is currently integrating Artificial Intelligence (AI), responding to the call for new concepts. Here 
Airbus takes benefit of deep learning to detect complex patterns that would otherwise be impossible to properly 
characterize classically, opening the door for completely novel characterization paradigms and enabling manifold 
accuracy improvements. This work first focuses on obtained results on the detection of random telegraph signals (RTS) 
of CCD detectors under tests. By training a convolutional neural network (CNN) with RTS data, it has been possible to 
setup an algorithm achieving 20x faster data processing while increasing accuracy, providing unprecedented fast and 
performant RTS characterization. In another domain, multi-reflection-induced ghost stray light have been also 
characterized using CNN. Here, Airbus uses simulated data from optical software to generate 2D ghost maps used to 
train an algorithm capable of segmenting individual patterns. We show in this work that the appropriate architecture with 
optimized hyper-parameters achieves 97% accuracy. These ground-breaking results pave the way for a complete 
characterization of optical instrument ghosts that were so far neglected because of their complexity. It hence enables in 
the future more performant straylight correction algorithms as well as providing extended freedom in the design of space 
optical instruments.   

Keywords: Machine learning, deep learning, artificial intelligence, convolutional neural network, dark current, random 
telegraph signal, stray light, ghost 
 

1. INTRODUCTION  
In order to increase space optical instruments radiometric accuracy. Airbus exploits state-of-the-art research in optics and 
sensors characterization and calibration, as this phase is particularly important. Therefore, to overcome actual limitation 
of current methods, Airbus currently adapts and develops AI methods, taking benefit from the recent explosion of 
computational power. This paper presents two methods for two distinct subjects where AI and especially neural networks 
have been used in order to improve radiometric accuracy and pave the way for overcoming physical limitation of optical 
systems. The first one focuses on obtained results on the detection of RTS with a 1-D CNN. The second work develops 
ghost stray light characterization with 2-D CNN for image pixel-wise segmentation. Particularly, this work deals with 
database generation specific to ghost stray light CNN training. 

 

2. RANDOM TELEGRAPHIC SIGNAL PROCESSING WITH MACHINE LEARNING 
2.1 Introduction to RTS 

RTS results from dark current fluctuations of pixels between two or more levels. Such effects are expected to be 
randomly distributed over the detectors, unless there is a specific circumstance allowing its particular location on some 
detector surface region e.g. physical defect. Pixels suffering from RTS are commonly assigned as blinker pixels in dark, 
since such defects could be observed as temporal flashing elements in top of noise images. It is paramount to have RTS 
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pixels characterized in a way that the rates of both false positives and negatives are strongly mitigated, because of the 
potential impact such pixels might represent for an optical instrument. Pixels with RTS defects will degrade system 
performance in a global manner. The impact leads to a degraded radiometric accuracy and subsequent lower quality 
mission data products, especially if the quantity and severity of such defects are also degrading during mission’s lifetime. 
This effect is normally illustrated with the pixel signal time-series (TS) plot for a large number of frames, see example 
below in Figure 1. The goal of a RTS detection method [1] is to identify the location of the defective pixels. Regarding 
the pixels RTS defects characterization, the objective is to measure:  

1. The maximum amplitude of the effect i.e. RTS jump height 
2. The associated frequency of occurrences i.e. RTS jumps per second, per defective pixel.  
3. Number of RTS levels, respective level signal average value and signal distribution over these levels i.e. 

percentage positioning on each of the measured levels. 
 

 

 
Figure 1. (Top) normal pixel behavior  i.e. noise. (Bottom) pixel presenting multi-level RTS behavior. The x-axis represents 
the frame number and y-axis the pixel signal normalized for the given time-series. 

 

There are several algorithms able to both detect and characterize RTS defects. The so-called classical RTS detection 
methods limit the need to perform human visual inspection on dubious cases. Such methods could be nevertheless 
specified and optimized for distinct detector technologies in order to minimize false detection rates but also to increase 
the characterization accuracy. At Airbus, we have used in recent years two of the most frequently used methods for 
detections and characterization of RTS effects for optical instruments development, for two distinct optical instruments: 

1. Time-series histogram based method [2] 

2. Sharp-edge (e.g. step filter) method [1][3] 

However, the classical methods require significant configuration and adjustments based also on empirical observations 
for a given yet to be tested detector type or architecture. Despite that, since large test data sets are often required in order 
to perform a representative RTS effect analysis, the processing framework, allowing run long lasting algorithms, 
becomes one major driver. 

2.2 RTS processing using deep learning 

As stated above, the analysis of RTS pixels on a detector requires human intervention which could impact the outcome 
of the results with respect to false detections (both negative and positive). Such intervention becomes particularly 
relevant in cases with a large number of detections i.e. detectors with large number of detected pixels represent a higher 
effort to inspect. Given this, harnessing the capability of training a model able to distinguish these false detections, will 
improve the accuracy of the detection and as consequence of its defects characterization – quality. The approach tested is 
to use automatic detection (and characterization) based on machine learning using the inspector‘s experience to train the 
system. The demonstration setup is a sequential model with a simple CNN [4].  
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Below on figure 2, it is illustrated one pixel time-series in perspective to the complete test data set i.e. large number of 
detector images. On figure 3 is depicted the simplified overview on the RTS detention and characterization process done 
pixel-by-pixel. 

 

 
Figure 2. Test data set including the pixel time-series to be checked for RTS. 

 

 
Figure 3. Simplified overview on the RTS detection and characterization process. 

 

The current results represent a preliminary outcome on using machine learning along with optical space borne instrument 
on-ground characterization. Nonetheless, these initial results are very promising due to the early phase of development 
on the machine learning application demonstration, which is not mature for systematic instrument data analysis yet. The 
test accuracy performed with the trained module reached ~96% on the training data set. There is still room to improve 
the data used for training. Comparing detection results between the machine learning model and the classical time-series 
histogram algorithm using a data set of time-series for detector images of approximately 600x260 pixels, reach less than 
1% of absolute uncoherent detections between the two approaches i.e. classical vs machine learning. The accurate and 
detailed characterization of detected RTS defects, using this new machine learning application, is a key aspect still to be 
archived. 

Additionally, since in this subject where processing power and long lasting data acquisitions are crucial to estimate the 
pixel defects impact on system performance, the time required to obtain a representative outcome is one quantitative 
benchmark. The machine learning application achieved results that are substantially faster compared to a classical 
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algorithm based on histograms time-series standards. The machine learning method has generated the same equivalent 
output approximately 20 times faster. Such outcome is a clear demonstration justifying the feasibility of this approach. 

 Table 1. Result using the same test data set with two independent RTS analysis algorithms for equivalent outcomes. 

 

 

Still as major enabler to use machine learning for RTS analysis: it is mandatory to have an accurate classical method in 
place to classify and characterize the pixels presenting RTS behavior on high resolution detectors. It is the only 
possibility to allow model’s training data generation since data acquisitions obtained with physical hardware could then 
be used along. As alternative, instrument synthetic (simulated) data should be used within the same model training 
objective. Despite the early stage of development of this breakthrough methodology to address RTS, the use of artificial 
intelligence and specifically machine learning along with optical instruments characterization and calibration represents 
a disruptive approach with the current methodologies applied with the space systems development during the last 
decades. Thus, using machine learning on detection chain validation and more generally at system instrument 
performance plus calibration brings a substantial improvement: more quality in substantial less time. 

 

3. GHOST STRAY LIGHT PROCESSING WITH MACHINE LEARNING 
3.1 Introduction to ghost stray light within space-spectrometers 

Airborne space instruments and spectrometers particularly need an extremely competitive design and long calibration 
campaigns before launch in order to reach high performance. To improve the radiometric accuracy, it is very important 
to characterize and correct the whole system response. It concerns detector features like detector non-uniformity, 
defective pixels but also optical components as none optics are perfects. Airbus produces many cutting-edge space 
spectrometers, however to continuously improve products, there is a need to develop co-designed spectrometers or space 
optical components, mixing the best existing optical know-how and state-of-the-art processing and post-processing 
computing methods. This need is particularly important for ghost stray light characterization and processing. Stray light, 
which is non-nominal light reaching sensors, is mainly caused by contamination or optical roughness leading to 
scattering or Mie diffraction. Another cause is Fresnel reflection also known as ghost stray light which is caused by in-
field or out-field reflections on opto-mechanical elements, as shown in figure 4. 

 

 
Figure 4. Stray light examples (red rays) and nominal light (blue rays). 

RTS algorithm Classical time-series histogram Machine learning 
Processing time ~10h <30min 
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Figure 5, adapted from [5], shows for a given scene the ghost stray light impact on radiometric accuracy. Therefore, 
there is a need to use post-processing ghost stray light methods in order to improve radiometric accuracy. Such a 
common method uses kernel deconvolution of the acquired image. Therefore, kernels (or impulse response) have to be 
measured, simulated or either extrapolated for each sampling point in the spectrometer parameters space during 
calibration campaigns (in the case of a slit-imaging spectrometer the number of measurement might be the number of 
pixels of the sensors, representing wavelength and position in the imaging slit). Then, those kernels are stored and used 
to post-process images coming from the calibrated spectrometer. However, this kind of calibration campaign is very 
expensive and could be imprecise and non-robust to every ghost shape with state-of-the-art ghost stray light 
identification algorithm. Indeed, ghost power could be very low compared to nominal light response, overlaps could 
occur in between ghosts or between ghosts and nominal light. Ghost imaging could also be noisy and this render the task 
of ghost detection very difficult and time-consuming. Moreover, as ghosts could be unpredictable during design they are 
often seen lately in the integration phase and are either characterized by costly and long calibration campaign or either 
ignored. As consequences, the balance cost versus performance is not worthy, and most of the time, a lot of ghost are 
ignored or either estimated by extrapolation on a few measurements. Therefore, a very precise and less expensive pixel-
wise segmentation of ghost stray light is necessary to increase performance of the whole system. 

 

 
Figure 5. Ghost map and ghost impact on radiometric accuracy, adapted from [5]. 

 

3.2 Ghost stray light segmentation with deep learning 

A breaking new solution imagined by Airbus is to use the calculation power of machine learning methods in order to 
automatize ghost stray light characterization on impulsion response within a spectrometer. For this task, Airbus used a 
deep learning method based on CNN. The purpose of the algorithm is to automatically learn to segment ghost stray light 
from the whole point spread function (PSF) over the set of calibration images. This method, then allow to precisely 
identify ghost stray light with fast implementation over correction kernels. Moreover, the more precise the segmentation, 
the fewer images are needed during calibration and then, ghost evolution over space-parameters could be precisely 
extrapolated.  This method paves the way of AI applied for space spectrometer characterization and is the subject of a 
2019 patent filing [6]. 

Convolution neural networks used for this segmentation task are successive layers constituted by local tunable 
convolution filters. The algorithms learn using gradient descent in order to compare given outputs to ground truth and 
then tune their own filters in order to match output and ground truth [4]. Basically, tunable parameters are kernel 
coefficient for each neuron. In our use case, the purpose is to generate a filter capable to individually and pixel-wisely 
track ghost stray light from other kind of light reaching the sensor and for every calibration images as for example shown 
in figure 6. 
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Figure 6. CNN purpose: identify pixel-wisely each ghost stray light and segment from nominal path light for each images 
acquired or simulated. 

 

This part focuses on multi-reflection induced ghost stray light 2D segmentation within spectrometers images, so called 
pixel-wise segmentation. This is a first step for tackling the problem of ghost identification. Therefore, the first need is to 
build an adapted training database for the model, where each pixel is associated to a label referencing to nominal light, 
noise or kinds of ghost stray light. With such a database, it is then possible to train a model of CNN by showing images 
and labels in order to automatically fine-tune the model. Several databases have been generated from optical simulation 
model. The principle used to generate revealing database and associated labels is the described by the following 3 steps; 
as filed as patent in 2020 [7]: 

 Step1: Acquire images for several source point positions (See example in figure 7 with 2 source point 
positions). Images could represent nominal light, and it is also possible to individually generate ghost stray light 
shapes. This first generation gives automatically the basis for labels (ground-truth).     

 

 
Figure 7. Independent generation with an optical model of nominal light (a), ghost 1 (b) and ghost 2 (c), for example each for 2 
positions in the field. 

                                                                                         

 Step2: Reconstruct images with nominal light and several ghost shapes using figure 7 inputs. In the same time, 
this method associates ghost binary labels to each images (figure 8). 
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Figure 8. Reconstruction of images with nominal light and ghosts, where labels are associated to each images from figure 7 and 
fully characterized. 

 

 Step3: Step 1 and 2 allow generating images constituted of nominal light and ghost shapes with associated 
ground truth in order to train a CNN. To improve the training efficiency, those acquired images are then the 
basis for data augmentation. This method consists of artificially and exponentially increases the size of the 
database (images and labels) by adding different kind of noise, apply transformation to contrast the images, tune 
the SNR or modify the relative power of ghost shapes within the images. More evident transformations like 
translate/rotate images are also used (figure 9 shows translated shapes within different images). The purpose of 
data augmentation is to artificially and easily prepare the algorithm to recognize a maximum of possible 
occurrence of ghost stray light. The size of the database must be correlated to the complexity of the task and to 
the size of the model, particularly the number of tunable parameters within the CNN, in order to avoid under or 
over-fitting phenomenon. 

 

 
Figure 9. Different artificial images acquired with previous methods, nominal light and ghost shapes are in different relative 
positions within the sensors. 

 

Two algorithms have been developed in order to compare results and find an adapted architecture to the problem. The 
first one is a version of the well-known U-net CNN segmentation algorithm [8], particularly used for medical images 
segmentation. The second one (figure 10) is a 4 layers-CNN where hyper-parameters like the number of layers, filters or 
activation functions have been fine tuned to optimize results. 
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Figure 10. A CNN architecture used with example of input/output compared to ground truth. 

 

The characteristics of the CNN (figure 9) for a total of 4 million tunable filter parameters are shown in table 2: 

 

 Table 2. CNN features for figure 10 model. 

Hyper-parameters Filter depth Convolution kernel size Activation function 
Convolution layer #1 256 3x3 Rectified Linear Unit (ReLU) 
Convolution layer #2 512 3x3 ReLU 
Convolution layer #3 1024 3x3 ReLU 
Convolution layer #4 5 1x1 Sigmoid 

 

In comparison, the U-net segmentation architecture adapted to ghost stray light clustering has 60 000 independent 
tunable parameters. Two indicators of results have been chosen in order to quantify the quality of ghost segmentation, 
including noised background detection. Accuracy shows the ratio of pixel-wise label detected over all the test images and 
for every label (nominal light, ghosts, noisy background). The Intersection over Union (IoU) index is a more useful 
criterion representing the overall matching percentage between each label and each detected ghost area. Experiments 
have been done on a regular computer. The given database presented here and used to train CNN is made of 5 labels with 
3 ghosts to segment. The basis of this database is made of 60 images, and then data augmentation has been used in order 
to efficiently train the models on many examples with different SNR, power variation between ghosts and nominal light, 
overlapping shapes. The characteristics of this given database, where we got best results for a given training time is  
shown in table 3. 

 

Table 3. Training database constitution before and after data augmentation. 

Initial database 
size 

Number of labels Size after data 
augmentation 

Total number of 
pixels seen during 

training 

Power ratio 
nominal vs ghost 

SNR 

60 images 5 13 000 images 10e8 From 2.5 to 100 From > 1 to +inf (no 
noise) 

 

It has been possible during test with new images (which have never been seen by the model during training) to reach a 97 
% accuracy, and a 65 % IoU index level with the 4-layers CNN (Figure 9). The results for test and revealing images for 
the 2 architectures and this given training database are shown in table 4. 
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Table 4. Training database constitution before and after data augmentation. 

 Mean accuracy  Mean IoU index over ghost 

U-net 89% 11% 
CNN Airbus (Figure 11) 97% 65% 

 

The two architectures could reach similar results however the U-net architecture is quite longer to train and that is why 
Airbus trained a new CNN structure more efficient giving the Figure 10 outputs. 

 

 
Figure 11. Results of a CNN-based segmentation obtained with trust score scale for a given database. 

 

4. CONCLUSION 
Those ground breaking results show that artificial intelligence methods are compatible with current methods in order to 
cleverly manage problems caused by the complexity of our system and the limitation of hardware know-how. We show 
two domains of applications possible, representing two different state-of-the-art performance limitations for space 
application which are RTS and ghost stray light detection. However, results could be improved and extended by using 
more computation power in order to generate bigger database on bigger CNN with a faster training. The good point of 
RTS detection is that such databases already exist.  Therefore, starting this work allows Airbus to create and consolidate 
huge database adapted to AI and space applications and then continue to improve performance of the training of our 
algorithm until a full in-space deployment. Once trained and fully optimized, CNN could be very easy and fast to use in 
operational condition. 

For ghost stray light segmentation, the next step is to cluster the ghost contribution within a pixel level, where the pixel 
value could be the superposition of nominal light or different ghost stray light patterns. Another step has been done by 
clustering training images with tuned DBSCAN algorithm in order to generate labels before using the data augmentation 
methods and then train a CNN. Figure 11 shows the patented solution [7] in order to accelerate the overall process of 
ghost stray light characterization during calibration campaigns. 
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Figure 12. Acquisition of a few images (simulated or either measured during calibration). The labels are created by a fine-tuned 
DBSCAN algorithm. After data augmentation, the overall generated database is used to feed the CNN training. 

 

The overall process is, in theory, faster and more precise than actual methods. And, by generating several databases, 
models perpetually increase their precision. Therefore, Airbus continues to develop AI related technologies in the field of 
space optics in order to always reach more precise instruments. 
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